
TJHSST Senior Research Project
End-to-End Publication Using the Bittorrent

P2P Filesharing Protocol
2006-2007

Andrew Wang

January 24, 2007

Abstract
Bittorrent is a promising peer-to-peer network that always allows

for fast download speeds despite the number of peers downloading the
file. Currently, there exist tools to make .torrent files, tools to ”track”
the peers downloading the file, tools to host .torrent files, and tools
to initially upload the file. This project aims to unify this process
by making an end-to-end software suite that simplifies the process of
publishing a file on the Bittorrent network for download. The key to
this will be automating and streamlining the process from the per-
spective of the user. It will involve a complete implementation of the
Bittorrent protocol, including encoding torrent files, peer-to-tracker
and peer-to-peer communication, and a greater understanding of the
benefits and detriments of the Bittorrent protocol.

Keywords: Bittorrent, Peer-to-peer, Linux, Publishing, Down-
load, Tracker

1 Introduction

1.1 Rationale

The scope of the project is broad, because it aims to be a complete solution
to publishing files using Bittorrent. It will have to handle all aspects of the

1



Bittorrent protocol, from processing the file to make the .torrent metadata
file to hosting and tracking the .torrent file and possibly a download client.

A new way of publishing using Bittorrent is important because the cur-
rent system of publishing is much more complicated and is inaccessible to
the normal computer user. Bittorrent has clear advantages over traditional
methods of publishing via the Internet, such as HTTP or email, because it
can handle a far larger number of users concurrently and thus allows for the
publishing of far larger files, such as indie HD movies, podcasts, or other con-
tent that would otherwise be unfeisable because of bandwidth constraints.
This system would also be superior to other forms of P2P though the use of
a ”everseed” that would keep the torrent from ”dying” (a state where there
are no peers with a complete copy of the file).

1.2 Purpose

This project started out as writing a better download client, but there is
already a plethora of download clients available and finding an easy to use
and mature Bittorrent development library proved difficult. It would also
be difficult to surpass the quality and features of other download clients
developing by myself, and users would be unlikely to switch their choice in
download clients unless there was a very good reason. Thus, the project
has been redirected toward streamlining the currently convoluted process of
distributing a file using the Bittorrent protocol.

1.3 Expected Results

The research of this project involves the Bittorrent protocol. Given the
specification of the protocol given on the Bittorrent website, I aim to imple-
ment the server side aspect. This means encoding and dencoding of .torrent
metadata files, hosting of .torrent metadata files, and subsequent tracking
and peer-to-tracker communication of download peers by the tracker. It will
involve the subject areas of large scale networks, encoding and decoding al-
gorithms, and peer-to-peer communication.

1.4 Type of Research

This project will be use-inspired basic research, because the underlying goal
is to gain an understanding of the benefits and limitations of the Bittorrent

2



protocol. There are great practical implications for the end product of this
research, but ultimately the project was started to gain an introduction to
networking and peer-to-peer technology.

2 Background

Bittorrent is an up and coming filesharing protocol that has emerged in
the wake of illegal services such as Kazaa, Napster, or Bearshare that have
since been shutdown or forced to end their copyright violations. Bittorrent
is a much more legally feisable filesharing protocol than previous attempts,
because there is no copyrighted content to be stored on centralized servers
that can be subpoenaed or seized, and it has become extremely popular for
independent movie makers and other people that need to distribute their legal
content without buying an expensive server. A movie distribution method
using Bittorrent is also being developed by major movie companies, as they
too see the benefits of peer-to-peer technology.

The whitepaper written by the creator of Bittorrent available on the of-
ficial Bittorrent website is the most useful reference for this project. Addi-
tionally, there is a page on wiki.theory.org that takes and expands upon the
official protocol specification that is useful for more detailed help. These two
documents give a total description of all aspects of Bittorrent, and will be
the only necessary references throughout the project’s extent.

3 Procedure and Methodology

3.1 Planning

The languages used in this project will be Python, for all parts of the project.
Performance is not an issue because the processor and bandwidth require-
ments are low. A webserver of some sort will be needed to host the .torrent
files, but this can be done with a third-party solution, or a basic server can
be written if needed. The stages of this project can be split up into a number
of clearly defined steps:

1. Study and implementation of encoding .torrent metadata files. These
files are ”bencoded,” which is a translated form of dictionaries, lists,

3



strings, and integers. This will also coincide with studying of the vari-
ous kinds of metadata stored in .torrent files as well as an interface for
creating these .torrent files.

2. Study and implementation of a Bittorrent tracker. The tracker must
process the .torrent metadata value, store it into a database, and then
handle processing ”announce” and ”scrape” requests from the clients
that wish to download the file. It will also make use of the ”bencoding”
algorithm to send data from the tracker to the client.

A typical ”announce” request from a client consists of status and
unique identifying information. The tracker stores this information in a
database, and the tracker then sends the client identifying information
and a list of peers for the client to connect to for downloading and
uploading purposes.

A typical ”scrape” request asks the tracker for status information
about a single or all torrents that the tracker is tracking. The differ-
ence between an ”announce” and ”scrape” request is determined by the
URL used to query the tracker. The tracker will respond with infor-
mation like the number of peers and seeds connected, and the number
of downloads completed.

3. Making a web interface that takes a file, prompts the user for the
minimum amount of information regarding the file through the use of
automation and intelligent defaults, make a .torrent metadata file for
it, add it to the tracker, and put the file up for download via HTTP.

4. The final part of the project is the addition of the ”everseed.” The ”ev-
erseed” is the initial and permanent uploader for the file that prevents
the torrent from ”dying” (a state where a complete copy of the file
does not exists among the peers in the swarm, preventing the file from
ever reaching completion). This is a problem when a torrent has been
around for a long time or is not that popular.

3.2 Testing and Analysis

Testing of encoding .torrent files is done using examples on the Bittorrent
website and others. The program will transparently handle errors because it
will simple treat the invalid input as a string. This will result in an incorrect

4



.torrent file though, so I will build in checking when I make the frontend for
making .torrents. Performance is also not an issue for the bencoding program
because it takes minimal time even with the use of Python. The torrent files
have also been verified using the official Bittorrent client as well as popular
clients such as Azureus or Shad0w’s.

[03:42:11] awang::hermit $ ./torrentfile.py

torrentfile.py 0.2

Enter a string: hello world!

Bencoded string: 12:hello world!

Enter an integer: 12345

Bencoded integer: i12345e

Enter a list: apple,orange,pear,grape

Bencoded list: l5:apple6:orange4:pear5:grapee

Example bencoded dictionary

Dictionary: {’myname’: [’andrew’, ’wang’],

’dozen’: 12, ’apple’: ’red’, ’banana’: ’yellow’}

Bencoded: d6:mynamel6:andrew4:wange5:dozeni12e5:

apple3:red6:banana6:yellowe

The following is the step-by-step process through which the tracker han-
dles an announce request from a client. First is a typical HTTP GET an-
nounce request from the test Bittorrent client that I am developing con-
currently to test the tracker. The data is passed in the GET request as
urlencoded key-value pairs:

GET /announce/?uploaded=314159&compact=YES%21&numwant=3&

ip=127.0.0.1&info_hash=abcdefghijklmnopqrstuvwxyz&event=started&

downloaded=951413&trackerid=&key=AWANG

&peer_id=evertestclient000000&port=6881&left=1 HTTP/1.0

Host: localhost:6969

User-agent: Python-urllib/1.16

The tracker then urldecodes this text, and turns it into a much more
useful python dictionary:

{’uploaded’: ’314159’, ’compact’: ’YES!’, ’numwant’: ’3’, ’ip’: ’127.0.0.1’,

5



’info_hash’: ’abcdefghijklmnopqrstuvwxyz’, ’event’: ’started’, ’downloaded’:

’951413’, ’key’: ’AWANG’, ’peer_id’: ’evertestclient000000’, ’port’: ’6881’,

’left’: ’1’}

The data in this dictionary is then used to form an appropriate response.
Various parts of this, such as the status, downloaded, key, and peer id, are
stored in the database for later use. For example, the tracker honors the
numwant optional variable from the client, which is of the value 3, and forms
the following dictionary (please note that the peers in this scenario are gen-
erated randomly):

{’peers’: [{’ip’: u’68.150.132.78’, ’peer_id’: u’EVERCLIENT1111111111’,

’port’: 12454}, {’ip’: u’106.190.185.236’, ’peer_id’: u’EVERCLIENT8888888888’,

’port’: 41582}, {’ip’: u’8.56.239.117’, ’peer_id’: u’EVERCLIENT8888888888’,

’port’: 64733}], ’min interval’: 240, ’complete’: 1, ’interval’: 720,

’warning message’: ’’, ’tracker id’: ’EVERTRACKER’, ’incomplete’: 0}

This is then bencoded, and sent to the client as a text/plain document,
which is seen as follows:

d8:completei1e10:incompletei0e8:intervali720e12:min interval

i240e5:peersld2:ip13:250.192.86.977:peer_id20:EVERCLIENT2222222222

4:porti18252eed2:ip13:156.51.108.137:peer_id20:EVERCLIENT7777777777

4:porti1171eed2:ip13:64.166.125.537:peer_id20:EVERCLIENT4444444444

4:porti25819eee10:tracker id11:EVERTRACKER15:warning message0:e

The client then bdecodes it, yielding the following dictionary:

{’peers’: [{’ip’: ’250.192.86.97’, ’peer_id’: ’EVERCLIENT2222222222’,

’port’: 18252}, {’ip’: ’156.51.108.13’, ’peer_id’: ’EVERCLIENT7777777777’,

’port’: 1171}, {’ip’: ’64.166.125.53’, ’peer_id’: ’EVERCLIENT4444444444’,

’port’: 25819}], ’interval’: 720, ’complete’: 1, ’min interval’: 240,

’warning message’: ’’, ’tracker id’: ’EVERTRACKER’, ’incomplete’: 0}

This data will then be enough such that the client can try to connect to
other peers and actually start downloading the file.

3.3 Goals and Requirements

The goals for this project are as follows:

6



1. Easy to use, automated front end for the user

2. Bencoded .torrent file creation and parsing.

3. Correct implementation of tracker software and tracker-peer communi-
cation

4. Implementation of an automatic, permanent ”everseed” that prevents
the torrent from dying

4 Expected Results

I expect a complete, easy to use frontend that will handle and automate
as much of the process of publishing a file through Bittorrent as possible.
These results will be represented with screenshots and flowcharts describing
the process. The website should be easy enough to use and well designed so
that the proper steps to take are obvious.

This could be a very useful way to easily distribute files within a band-
width limited environment. It could be useful to any project that needs to
distribute large files or other people who want to use the Bittorrent protocol,
because it will be a complete implementation.

7


