End-to-end Bittorrent Publication

Andrew Wang, TJHSST Computer Systems Lab 2006-2007

Abstract

End-to-end publication through Bittorrent
involves creating a .torrent metadata file,
setting up a central “tracker,” and an initial
“seed” with a complete copy of the file. This
project simplifies this process by providing an
unified end-to-end publication package while
also addressing the primary weakness of
Bittorrent..

What is Evertorrent?

Evertorrent is an improvement upon the
current Bittorrent publishing system. Bittorrent
itself has been recognized as an efficient
means of distributing large files, but it has a
single weakness: if there are no clients with a
complete copy of the file, the torrent “dies”
because downloads can never complete.

By combining the traditional (Fig A) and
Bittorrent (Fig B) models of distribution,
Evertorrent (Fig C) was born. It introduces the
concept of an “everseed”, an initial, eternal
seeder that ideally runs on the same server as
the tracker. This means that the torrent will
never “die” from the lack of a complete copy
of the file.

Procedure

Generation of a .torrent metadata fie is
the first step in Bittorrent publishing. This
file tells the peers how to connect to the
tracker.

The tracker handles connecting the peers
with each other. A peer starting a download
will request the IP addresses of other peers
In the “swarm,” and then connectto
download the file.

The innovative “everseed” is the final
step, that builds on the current system by
preventing torrents from ever “dying.”

= ol =
-~ T .m ™ Ty =
A A A

Figure A Figure B Figure C

Figure A describes the traditional download model, with one centralized
server. Figure B describes a traditional Bittorrent download swarm. Figure
C describes the Evertorrent model, combining elements of Figure A and B.

Example of a client “announce” request

Client accesses tracker URL with
urlencoded key/fvalue pairs

"info_hash", "peer_id", "port”, Tracker parses the HTTP request,
"uplu_aded", rdownloaded”, "left", recognizes URL as an announce request,
"compact”, "event" and calls announce_request() function

Ex. "GET fannouncef<key:val> HTTPF/1.1

Tracker inserts data from client request
into the peer database, and then selects
a number of peers randomly from the
database to send back to the client.

Peer list contains: "peer_id", "ip", "port"

Tracker constructs response dictionary
telling the client how to act, status info,
and the list of peers from before

"warning message", "interval, "min
interval", "tracker id", "complete",
"incomplete", "peer list"

Tracker responds with a text/plain document
containing the bencoded dictionary of key/
value pairs.

Bencoding is defined at

Client bdecodes the textyplain http:/fwiki.theory.org/BittorrentSpecification

document, and then uses the
list of peers to connect to other
clients and start downloading
the file.

Results

Bittorrent metadata files can be
successfully generated by my bencoding
algorithm, also used in the tracker and test
client. The files load correctly in a number
of popular Bittorrent clients, such as the
Mainline client and Azureus.

The tracker correctly handles scrape and
announce requests from Bittorrent clients.
Testing was done with 3rd-party clients for
Increased compatibility.

The planned features of a web-interface as
well as a web seed have not been
completed because of time constraints.



