A FLEXIBLE AND EXPANDABLE ARCHITECTURE
FOR COMPUTER GAMES
by

Jeff Plummer

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree of
Master of Science

ARIZONA STATE UNIVERSITY

December 2004

A FLEXIBLE AND EXPANDABLE ARCHITECTURE
FOR COMPUTER GAMES
by

Jeff Plummer

has been approved

November 2004

APPROVED:

, Chair

Supervisory Committee

ACCEPTED:

Department Chair

Dean, Division of Graduate Studies

ABSTRACT
Computer games have grown considerably in scale and complexity since their
humble beginnings in the 1960s. Modern day computer games have reached incredible
levels of realism, especially in areas like graphics, physical simulation, and artificial
intelligence. However, despite significant advances in software engineering, the
development of computer games generally does not employ state-of-the-art software
engineering practices and tools.

This thesis describes an architecture for computer games as a System of Systems
where the computer game itself is emergent. The proposed architecture follows a data
centered framework where the independent components collaborate on a central data
store. The architecture offers capabilities that are essential in overcoming challenges
faced in building computer games that can enjoy modifiability, expandability, and
maintainability traits. The architecture promotes component-based development (e.g.,
commercial off the shelf components) since the collaborating components have loose

couplings, which in turn facilitates systematic design integration of System of Systems.

TABLE OF CONTENTS

Page
LIST OF FIGURES ...ttt XXiii
CHAPTER
1 INTRODUCTION ..o 1
1.1 MOUIVALIONiiiiiiiiiiiee ettt bbbttt 1
111 The current Approach and Its ShOrtComingscccceeveevveieninneereseennen, 1
1.1.2 The Migration t0 COTScoiiiic e 4
1.1.3 NOt @ GAME ENQINE.....iiiiiie e 5
1.2 High Level Objectives and GOalScccooeiiiiiiiiiiiiceeies s 6
121 Architectural Requirement: Support COTS-Based Development.............. 7
1.2.2 Architectural Requirement: Better Knowledge Localization 7
1.2.3 Architectural Requirement: Flexibility / Modifiability...........c...cccccvvvennenn. 8
1.2.4 Architectural Requirement: Expandability / Maintainability 9
1.25 Performance and Other Quality Attributes are NOT requirements............. 9
1.3 CONIIBULIONS ..o 10
2 LITERATURE REVIEW ..ottt 11
2.1 Current State of Game Development in Literature...........ccoocevveieencniesnenienn 11
2.2 The Latest Book Trends in Game Developmentcccccovvvievieiecieceennene 13
2.3 The First and Only Real Attempt at Game Architectureccccoeeveeevvenenne 14

iv

CHAPTER Page

2.4 SOTtWAre ArCNITECTUIEoouiiiiieicieeee e 15
3 THESIS METHODOLOGY ...ttt 17
3.1 Analysis of Games as Software SYStEMS.........cccevveviiiieiiecie e 18
3.1.1 Selecting Games t0 ANAIYZEcccveiveieiieie e 18

3. 111 EXIStING GAME GEINIESoviiiieiieieiesie ettt 19
3.1.1.2 Further Refinement — Isolate Important Propertiesc.ccecervennen. 21
3.1.2 The Selected Games for ANalysiS.........cccoovveviiiiiiiicieciesece e 23
3.1.3 ANAlYZING the GAMES.......ceeiieeee e 27
3.1.3.1 Analyzing Starcraft™ Requirements with Use-Cases..........c.cccccvenenn. 27
3.1.3.2 Understanding the Sub-System Interactioncccccovevrviviiiiniinnnnnn, 30

3.2 Identify Candidate Architectural Styles...........cccooviiiiiiiiiii e 32
3.2.1 [Y] (<o LRSS 32
3.2.2 Data-Centeredccoiiiiiieieieee e 32
3.2.3 Independent COMPONENES........c.coiiiieiieie et 33
3.24 DAta FIOW........oiiieieiicc e 33
3.25 SYSTEM OF SYSIEMS ...t 33
3.3 AIChItECTUIE DESIGN ...t 34
3.3.1 ChooSING @ TOPOIOGYccuveivieieeie e 34
3.3.1.1 Layered Architectural Style..........ccccceviveiiiiiiieiece e, 35
3.3.1.2 Data Flow Architectural Stylecccooiiiiiiniiiieee, 36
3.3.1.3 Data Centered Architectural Style...........ccoccoviviiiiinniiiiiie e, 38
3.3.1.4 Independent Components Architectural Style...........c.cccoovvevveieiiennenn, 40

\Y

CHAPTER Page

3.3.1.5 SyStem Of SYSTEMSccueiuiiiiiiieieiere e 42
3.3.2 Making the Topology ChOICEccceiiiiiiiiiieee e, 43
3.3.3 Choosing a Style of Communicationcccccevvveiveieieece e, 45

T 0 00 R o L o To 1571 (0] Y USSP 45

3.3.3.2 BIACKDOAId.......coiieiiciecie e 46

3.3.3.3 Making the Communications ChoICecceveiviriiiiinin e, 47
3.34 SYNCAIONICILY 1 47

3.3.4.1 Synchrous at the Object LeVelcccccvevviiiieie e, 47

3.3.4.2 Batch SynChronizationccceoeeeniieninineeee e, 48

3.3.4.3 Hybrid Synchronization............ccocceeeiieiiienniee e 48

3.3.4.4 Making the Synchronicity ChOICEcccccevviieiiieii e, 48

3.4 The Idea — System of Systems Philosophyc.cccevvvviiiiii i 49

4 THE PROPOSED ARCHITECTURE (and a Simple DeSign)ccccooevvvrveieinene. 50
4.1 The Data-Centered System of Systems Topologyc.ccecveririeiieeienienennnenn, 50
4.2 Architecture — System COMMUNICALIONccveveiieieeie e 53
4.3 Architecture — SYNChronizationcccoeviiiiiiiniiieese e 54
4.4 Architecture — Distributed Synchronizationccccooeviiiiiiiinnenieneeen, 55
4.5 Architectural Features / Architectural Requirementsccccoeevvevverieseennnen, 58
45.1 Support for COTS-Based Developmentccocvevveieviieieeieseese e, 58
45.2 Better Knowledge LoCalizationcocooiiiiiiiiieieiesc e 58
453 System Flexibility / Modifiability...........cooooiiiiiii e, 58

Vi

CHAPTER Page

454 System Expandability / Maintainability.............ccccooiiiininiiiice 59
4.6 A SIMPIE DESION ..ottt e ae e 60
4.6.1 Potential Design: System Communication / Interaction........................... 60
4.6.2 Potential Design Cont.: Attaching Systems at Compile Time................. 61
4.6.3 Potential Design Cont.: System Communication...........cccceeevvererseennnnn. 63

4.6.4 Potential Design Cont.: Observer Pattern to Achieve Localization of

Domain KNOWIEAGEc.veivieiieie ettt 65

5 ARCHITECTURE VALIDATIONooiiiiiieiieeeesee e 68
5.1 Taking the Reference Games to the Design Levelcccccooiviiiiicicnenen, 68
511 APPIYING the DESION ...t e 68
51.2 Evaluating the results of applying the designccccccevvveieiieiecce e, 73
5.2 Developing a ProtOtyPecccveeeiieiieriecie st ste e 74
521 Prototype High Level DeSign.........cccciiiiiiiiiiiienesc e 74
5.2.1.1 Component SEIECLIONc.ccvuiiieiiiiie e 74
5.2.1.2 The ODJECt DAta.......cccveiieiriieieeie e esie et see et 76
522 Prototype Detailed DeSIgNcccoiiriiiiiiiiieiee e 77
5221 Component INTErfaCESceivuriieierie e 78
5.2.2.2 Domain-specific System — Object System Interactions........................ 81
5.2.2.2.1 Connecting Domain System to the Object System....................... 81
5.2.2.2.2 *Ticking” the Domain-Specific SYStemcccccevevvriiininieieenen, 82

5.2.3 Prototype EVAlUALION........cccooiiiiiiieeeee e 83

vii

CHAPTER Page

B RESULTS .ottt ettt et eeneane e e e e e 85
6.1 SUMIMAIY ...ttt ettt b e b ek e e st e e s be e s mn e e beeemeeenbeeanneeree e 85
6.2 Conclusions — Meeting The Architectural Requirements............c.cccocevevvenenne. 86

6.2.1 Support COTS-Based Development...........cccocvevviieiieenesieseene e 87
6.2.2 Better Knowledge Localizationc.coovvieiiiiniieniienceeeeeees 87
6.2.3 Flexibility / Modifiabilitycccocoiiiiiiiiiieeec e, 88
6.2.4 Expandability / Maintainabilitycccooeviiiiiiieiecccecce e 88
6.2.5 The Performance CONCEINcccoveiiiiiinieeee e 89

6.3 Important ConSIAEratioNS.cccveierieiierie et 90
6.3.1 DeSIgN IS CHILICAL.....ocveiieieii e 90
6.3.2 Central Object Management System = VERY different................c.......... 91
6.3.3 Think about the Data...........coveieieieies e, 92
6.4 FULUIE RESBAICI ... 93

6.4.1 Can this Architecture Work for Massively Multiplayer Online Games ... 93
6.4.2 Design: Domain-specific Component Connection to the Object
Management COMPONENTcc.oiiiiiiriri e 93

6.4.3 Design: No More Interfaces to Access Object Data (If performance

allows) 94
6.4.4 Architecture Inside the COmMPONENtS.........ccevveveiiieiieie e 94
6.4.5 What is messaging overhead for independent component style................ 94

6.4.6 The Architectural Tradeoff Analysis Method.................................95

viii

CHAPTER

Works Cited

APPENDIX Page

APPENDIX A - GAME ANALYSESo 99
A-11 GAME ANAIYSIS ..ciieieiieiiee e 107
A-111 Game Analysis - Use Case and Dynamic VIewc.ccocervveirernennen. 107
A-11111112.10.1 PIAYEI oo 107
A-11111711.12 SYSEEM..cciiiiiiiiiiieiieeeere e 107
A-111111113 System (Ticked)........ccoeevrrrrirmririinrirarrnrnnns 108

A-1112 MOUUIES ..o 109
A-11.121 Game Data.......ccccooriiiiiiiiiiieiiiee e 110
A-1.1.1.22 GamMeE LOGIC ..coviiiiiieiicie ettt 110
A-11.1.2.3 Technology MOAUIES........c.ccceevriiirerriieiiere e 110

AL 11231 Al s 110
A-1.1.10.2.3.2 AUAIO cooeiie s 110
A-1.1.1.2.3.3 GraphiCS.....cceciveiiiieiieiecieste et se e sre e snees 110
A-11.1.234 NEIWOIK ..cooeiiiiiiiiiiissieeee e 110

A -1.1.1.2.35 PRYSICS oot 110
A-111236 UserInterface.........ccccoriiiiiiiiiinien e 110
A-T1113 StArCraft......cccoooiiiiiicece s 111
A-11.1.3.1 USE CASES.....occiiiiiiiiiiiie i 111

AL 11310 SEAMUD oo 112
A-1113111.1.1 Select Multi-Player Game.............cceeevrurnne. 112
A-111311.1.1.2 SelectSingle Player Game............c.ccooeune.ne. 112
A-11.1.312 OptioNS MENUccvveiiiiiiiieie e sie e sie e 114
A-1.11312111 ENdMIiSSION....ccoesivmrirrairiirnierreinsieeneeans 114

X

APPENDIX

Page

A-111312112 GetHelp. i 115
A-11.13.121.1.3 GetMission Objective........ccccecvrvrrivrrrnnnen. 115
A-111312114 Load Game......ccecmimrriririiiienirienieeeieeeens 115
A-1113121.15 Modify Options.......cccccererirrnienririrreerienns 115
A-11131211.6 ReturnTo Gamecccrvrriveiiirinrinninnnn. 115
A-111312117 Save GamME......ccccovvmiiiiiiiiniiiii s 116
A-111313 Play Starcraftc.ccccoceririiriiiiieienese e 117
A-1113131.11 Attack Unit.....cccoocvriiiiiiiiiiiieiieeceee 117
A-1.11313.1.1.2 Change Map Display Area.........c..c.ccovenrne. 123
A-111313113 Gather RESOUICES.......ccccoreivrirereeinrenreennns 126
A-111313114 Giveunitan order.........c.c.cmminieiennen. 132
A-111313115 Move to LoCation.......cccccoovreririirinieiienenns 137
A-1.11313.1.1.6 Research Technology...........ccccevvrververurne. 142
A-111313117 Select ObJeCt......cccoovrimmiriririiiiirieieiene, 145
A-111313.1.1.8 Building construct Unit.............ccecoevvrrrenne. 150
A-11.1313.1.19 GiveBuildinganorderccc.cceeervrrurnne. 150
A-111313.1.1.10 Hold POSItIONccoerriiriiieiirinieieien 150
A-11.13.131.1.11 Manipulate Object Resources................... 151
A-111313.1.1.12 Manipulate Player Resources 151
A-111313.1.1.13 Modify Doable Commands.............c....... 151
A-11131311.14 Patrol LOCAtioN.......cc.cooerrvreriiinirieriannne 151
A-111313.11.15 Stop MOVEMENL........ccccvvveiiieiiiieiiiie i 151
A-111313.1.1.16 Unit Construct Building..........cc.cccverurnnrne. 151

Xi

APPENDIX Page
A-1.1.13.14 Design: Tick Starcraft System........c.ccccoveviveveiieiineiennn, 153
A-11.13.141.1.1 Tick Starcraft Game System....................... 154
A-1.1.13142 Tick Al SYSIEMcociiiiiiiiiieii e 155
A-111314211 Tick Al SYystem.....cccooomiinieiiniiieneeiienns 155
A-1.11314.21.2 Navigate Map - Pathfinding........................ 157
A-111314213 AUACK.....c.csiimiiriiiiiiie s 158
A-111314.214 Calculate Al State........cocervririvninieiennn 158
A-111314215 Calculate Next Movement...........ccccceouennene. 159
A-111314216 Calculate unitaction........ccccooevrivrernnnnn. 159
A-11.13.14217 Execute Map Watcher...........c.cccecuvrverennen. 159
A-1113143 Tick AUdio SYSIEMcocoviiiiiiiiiiiiiereeeeeee e 161
A-111314311 Tick Audio Systemcccccervmrivnirrinernnnn 161
A-1.1.1314.4 Tick Graphics SyStem..........cccccveviriverreieiieeireriennn, 164
A-11.13.14.4.1.1 :IGraphicsObjectSystem.........ccccccervrrrrrnnen. 164
A-11131441.2 Update View ObJecCtccccervvrivrivrvcinnnenn 164
A-11.1314.413 Tick Graphics System........cccccervvrvrrvernrnnn. 166
A-111314414 Update VIEWccovvviriiiiieienineneeeeieniens 166
A-11.13.14.4.15 Update Main VIEW........cccoerivevesinirerinnnn, 171
A-11131441.6 Draw MainView Objects.......c.cccccevvrrrrrnne. 171
A-111314.4.17 Draw MainView Terrain..........ccccecevvernne. 171
A-111314.4.1.8 Update All VIEWScceovvrvriiirininieienns 171
A-1113.144.19 Update Command Button View.................. 171
A-11131441.10 Update Mini Map View..........ccccuvvrrrrernne 172

Xii

APPENDIX Page

A-111314.4.1.11 Update Protrait VIieW...........ccceeveververnrne. 172
A-11.13.144.1.12 Update Status VIEWcccccvevvreerrarnnnnn. 172
A-1113145 Tick Network Component...........c.ccooervrvnvniveniennenn 173
A-1113145.1.1 Broadcastlocal objects TO server.............. 173
A-111314512 Tick Network Systemcccceeevevvrvernenne. 173
A-11.13.145.1.3 Update objects FROM serverc......... 175
A-111314.6 Tick Object COMPONENL.......cccceririreriririaieieeens 176
A-111314.6.1.1 Tick Object System / Game Logic.............. 176
A-111314.6.1.2 Update Commander Object..........c.cocn..... 178
A-11.13.146.1.3 Update Controlled Object........c.ccceevrrurnnen. 178
A-1113147 Tick Ul COMPONENT......ccoeviiiiriiriiiiiienieseeeeeeee e 179
A-111314.7.1.1 Process Keyboardc.cccoorvmririrriunnenne. 179
A-111314.7.1.2 ProcessS MOUSEc.cceerrrrvrrriieririerrieirenens 179
A-1113147.13 Tick UserInterface.........cccorvvviivnienernnnn, 179
A-11.14 Unreal TOUMAMENT.....cccooiiiiiiiiiesieeeeee e 182
AT 1141 USE CASES...cuieiiiiieiiieiieie st 182
A-1.1.1.411 Play Unreal Tournament...........cccccovveieiieiieeiesiesesinennens 183
A-111411111 ColleCt AMMO....ccccoriiiriiiirireieieseneenes 183
A-111411112 CollectHealth........ccooooininiiniiiiiiiiine, 183
A-111411113 Collect ltemccccoviviiiiiiiiirieeee 183
A-111411.1.1.4 Collect Weaponccceceevvevvverveiernernenn. 185
A-1114111.15 JUMP.iiiiiiiiieeeeee e 185
A-111417111.6 MOVE ..ot 185

APPENDIX Page
A-111411117 ROE.....ccceirieieiieeeere e 187
A-111411118 SNOOt....cccsotmiimiimiiiriiiiieiesesesesee e 187

A-111412 DeSIgN: TICK.....coooiiiiririiiiiiieieene e 188
A-111412111 System (Ticked)......ccooeriimirniniiirirrierienn 188
A-1114121.12 TickPhysics Component...........c..ccceoverurnne. 189
A-111412113 Tick Al SYStemcccccoviriiiiniiiiiinieieiee, 189
A-111412114 Tick Audio Componentc.cccceevevveivernenn 189
A-1114121.15 Tick Graphics 3D Component.................... 189
A-11141211.6 NO..oooiiiieiieeeee e 189
A-11.14.121.1.7 Tick Network Component.........c.cccecverureen. 190
A-1114121.18 Tick Unreal Tournament Game System 190

A-1.1.1.4122 TIiCK Al SYSIEMccoiiiiiiiiiieiiee e 191
A-111412211 Tick Unreal Tournament Game System 191
A-11141221.2 System (Ticked)........cooervrvrrirmririinrrernnnns 191
A-11141221.3 NO..oooiiiieeee e 191
A-111412214 Tick Al SYyStemcccoooeiiiiiniiiiiieieenee 191
A-111412215 TickPlayer....ciiiiiiieeienns 193
A-11141221.6 TickProjectile......c.cccccceriviviiiniieiiniiiinnnn, 193
A-1114123 Tick Audio COMPONeNntcccooerirerirenreieeeeinens 194
A-1114123.11 Tick Audio Component.........ccccevrrvrrurnne. 194
A-1.1.1.4124 Tick Graphics 3D Component..........ccccccervverrrernennen, 196
A-1114124.1.1 Tick Graphics 3D Component.................... 196
A-1114124.1.2 Update All Graphical Views.............cc...... 198

Xiv

APPENDIX Page

A-1114124.13 Update Character Status Overlay................ 198
A-11.14.124.1.4 Update GUI Overlays.........cccccoerrvurrivernrnn 198
A-1114124.15 Update MainPlay View............ccccevvriennnn. 198
A-11141241.6 Update Team Score Overlay............coc...... 200
A-1114124.17 Update Weapon/Ammo Overlay 200
A-11.1.4.125 Tick Network Component...........cccceevvrvververuesennnnnn, 201
A-1114125.1.1 BroadcastLocal Objects TO Server 201
A-11141251.2 Tick Network Componentcccecuerurnne. 201
A-111412513 Update Local Objects FROM Server.......... 203
A-11.1.4.126 Tick Object Component..........ccccceevvervrveerveriesennnnnn, 204
A-1114126.11 Tick Object Component..........c.ccecoevvrrvrrnne. 204
A-1.1.1.4127 Tick Physics COMPONENt........ccccvvrvrrieniieseerieeienens 207
A-111412711 Calculate Collision Reactionc......... 207
A-1114127.1.2 Detect ColliSions.........c.ccooevriiririiiniinennnns 207
A-1114127.1.3 TickPhysics Component..........cccecvrrurrnne. 207

APPENDIX B — PROTOTYPE DESIGNcoiiiiiiiieie e 210
o N S (010 1Y/ o[- TSRO PRPPPRTPPRPRS 218
B-121 ANAIYSIS VIBW...ciciiicie ettt sae e nnees 218
B-1.21.1 Logical ArChItECIUIEccoiiriiiiiirieieee e, 218
B-121.1.1 ODbJect INterfaces.........ccoooerimrieiiiie e 219
B-121111111 GameODbJecCt.......ccccccrrirriimiiriiiiiniininrierieinens 219
B-121111112 AI20DJECt....cccciiriiriiriiriiiiiiisiseeieeens 220
B-1211.1.1113 IAIODJECT ...ccctiiiiriirriereee e 220

XV

APPENDIX Page

B-121111114 IGraphics2DObjecCt.......cc.ccecervvrvvmivrrrrirrnenn 220
B-121111115 IGraphics3DObjeCt......cc.ccoovrviriinivirrrirnnn 221

B-1.22 LOQICAI VIBW......oiuiiiiiiiiieiiieee e 222
B-1221 Programming Utilities LiDrary........ccccocoomninininniiin e, 222
B - 1.2.2.2 SYSIBIMS .ot 223
B-1.221.2 AlSYSIEM ..o 224
B-1.2211 Al Component - Implementation............cccocervrvrnrivnrnennen. 224
B-1222111 AIlEXxported Classes.......ccccccommiiiiiiinnieniinienesieneenn 225
B-12221.1111 ROO.....cooiiiiiiiiiiiiieree e 225
B-12221.12 Private Al System Implementation............c.c.c.coo..... 227
B-12221.1211 CAISYSIEM ...ccoeiiiiiiiiieiierie e 227
B-122211212 CAIProcessorObJectc.cccoorrvvrvrriveruenn 228
B-122211213 CAIVIEWPIOCESSOIcccervevrierieirierierianenns 229
B-12212 Al Component - INterfaces.......c..cccoecevivevviivesivernsieseennenn 231
B-1.2221.21 Al Interfaces Object System Can Use To Communicate

With Al System 232

B-122212111 I1AIProcessorObject.........cccccevvmiivivervennnnnn. 232
B-12221.2112 1AISYSEEM ..cocviiiiiieiecceeee e 232
B-1222121.13 IAIVIEWPIOCESSOr......cccorireriiriiriaieienenns 233
B-12221.22 Al Interfaces The Object System Implements.......... 234
B-122212211 IAICapableObject......ccccriimiirivnivnrirrirnnnn, 234
B-1.222122.12 IAIODJeCtSYSIEM....cccccvriiiriiriniiieeeieine 234
B-1.2221.22.13 IAIProcessableObject..........cc.ccoouvvvrirrrrrnnnn. 235

XVi

APPENDIX Page

B-1.22212214 1AISceneManagercccccceevvvveerivnesineesnenns 236
B-1.22212215 TAIVIEW ..cocooiiiiiiiiieee e 236
B-1.222.2 Al2SYSIEIM ..ot 238
B-12221 AI2Component - Implementation...........c.ccccceervriirnnennenne 238
B-1222211 AI2EXported Classes.........ccccervverrereeieerreiieieeriesnens 239
B-122221111 ROO.....cooiiiiiiiiiiieree e 239
B-1.22221.2 Private Al2 System Implementation.............cc........ 241
B-122221211 CAI2SYSEMccceiiiiiiiiiiieiie e 241
B-122221212 CAI2ProcessorObjectc.ccccevvivvevvennnnne. 242
B-122221213 CAI2VieWProCessorcccccourervrivrereeenns 243
B-1.2222 AIl2 Component - INtErfaces..........cccevereneninennnnnieee, 245
B-1.2.22221 AI2Interfaces Object System Can Use To
Communicate With AI2 SYStEMccceiviiiiieiececeese e, 246
B-122222111 1AI2ProcessorObject.......cccccccccvrvveveriveruenne. 246
B-1.2222211.2 1AI2SYSIEM ...oooiiiiiiiiiiiieie e 246
B-1222221.13 IAI2VieWPrOCESSOr.......ccccorvirirvriaierenenns 247
B-1222222 AIl2 Interfaces The Object System Implements........ 248
B-1.22222211 I1AI2CapableObject.......ccccccrvvmvinivniniinnnnn 248
B-122222212 1AI20DbjeCtSyStem......ccccocviirinvnieiiiienene 248
B-12222221.3 I1AI2ProcessableObjectcccocvrvrrverunnn 249
B-1.22222214 1AI2SceneManagercccccuvvvririvveiiveennnns 250
B-1.22222215 TAIZVIEW .cccoooviiiiiiiieiese e 250
B-1.2232 Game ODbJeCt SYSIEMcccoiiiiiiiieieie e, 252

Xvii

APPENDIX Page

B-12231 Game Object Component - Implementation...................... 252
B-12223.11 Game Object Component Exported Classes............. 252
B-122231111 ROO....ccoiiiiiiiiiiiieree e 252
B-1.2.223.12 Private Game Object Component Implementation... 254
B-122231211 CDemoCamera.........cccccrvvmiririveniriunrieennennns 254
B-122231212 CDemoGameObjectSystem..............ceeurne. 255
B-122231213 CDemoMaiNVIEWccccorvviirivnnnieniiennenns 259
B-122231214 CDemoODJECtccccvrerriiierieniieie e 259
B-12223.1215 CDemoObjectSceneManager............c......... 265
B-12223121.6 CDemoViewBaseClass..........c.cccoorrvrrnnn. 267
B-1.22231.217 CTriangleGameObject........cc.ccocvvvvrrvrrrrnnenn. 273
B-12223.1.22 Data StruCtUres..........cccooueriiiiriieiiiiiiieseseenes 275
B-122231221 demoPOINt2i.....cccooriririiiiiiiiinininieiieniens 275
B-1.22231.222 demoPoint3f......ccccooviiriiniinininininciens 276
B-122231.223 demORECt......cccouiiiiiiiiiiiieiree e 276
B-1223.2 Game Object Component - Interfaces..........c.cceecveverrvennene 278
B-1.22232111 IObJeCtSYStEM.....cccocvrvriiiiiiirinieieieiens 278
B-12233 Component Attachings.........cccecvererimiineiesiiesrene e e 279
B-12242 Game SYSIEMccoiiiiiiiiiiieiieceee e 281
B-122241111 CDemoApplicationccccoeerivrvriivennnn 281
B-12252 Graphic 3D SYStemM.......cccciieiiiieiie e 284
B-1225.1 Graphics3DComponent - Implementation................c.c....... 284
B-1.222511 EXPOrted Classes.......ccccoorirrrmrerereninenesieeeneenen, 285

Xviii

APPENDIX Page

B-122251111 ROO.....coooiiiiiiiiiiiieiee e 285
B-12225.1.2 Private Graphics3D System Implementation............ 287
B-122251211 CGraphics3DProcessorObject.................... 287
B-122251.212 CGraphics3DSystem........ccccevvrvriurreenuenn 288
B-12225.1.213 CGraphics3DViewProcessorccc...... 291
B-1225.2 Graphics3DComponent - Interfaces.........c.cccecvevvrvivrvernenne. 293
B-12225.2.1 Interfaces the Object System can use to communicate
With the Graphics3D SYSIEMcceeiviiiiiieieeie e 294
B-122252111 IGraphics3DProcessorObject............c......... 294
B-122252112 I1Graphics3DSystemcccccevvmvveiververeene 295
B-1.222521.13 IGraphics3DViewProcessor..........c..cccoeeven.. 295
B-12225.2.2 Interfaces The Object System Implements............... 297
B-122252211 IGraphics3DCameraccccevvvevververnenne 297
B-12225.221.2 IGraphics3DCapableObject..........c..ccvenr..e. 297
B-1.222522.13 IGraphics3DObjectSystemccccvevvrnnene. 298
B-122252214 I|Graphics3DProcessableObject 298
B-122252215 IGraphics3DSceneManagercceu..... 299
B-1.222522.1.6 1GraphicS3DVIEWccccvrviiriiniiieiieienns 300
B-1.22.6.2 Graphics 2D SYStEMccccoiiiiriiiiienie e, 302
B-1226.1 Graphics Component - Implementation.............cccccevvenenne 302
B-12226.1.1 EXported Classes.......c.ccceeervimieereiiieieeireseesreesiesnens 303
B-1222.6.1.1.1.1 ROOU.....ccccoiiiiiiiiirierie e 303
B-1.2.2.26.1.2 Private Graphics System Implementation................. 305

XiX

APPENDIX Page
B-12226.1.2.1.1 CGraphicsProcessorObject...........cccccuerunne. 305
B-12226.1.2.1.2 CGraphicSSYSteM........ccevvverreriverreiereereeanns 308
B-12226.1.2.1.3 CGraphicSViewProcessorc.cccceeverune. 310

B-122.6.2 Graphics Component - Interfacescccccovevveivninieeniennn 312
B-12226.2.1 Interfaces Object System Can Use To Communicate
With GraphiCs SYSEMcuvciiiiiiiiece e 313

B-1.2226.21.1.1 IGraphicsProcessorObject..........c.cccccerurrnnne. 313
B-12226.21.1.2 1GraphicsSystem.........ccccoeviivmnivninieenienn 313
B-12226.2.2 Interfaces The Object System Implements............... 315
B-12226.22.1.1 12DGraphicsCameraccccccerverververeennns 315
B-12226.22.1.2 12DGraphicsObject........c.ccccovvrivniviininnnenn. 316
B-12226.2.2.1.3 12DSpriteGraphicsObject...........cccccevvvrrurnne. 316
B-12226.2.2.1.4 1GraphicsCameraccccceeceivvevveireseernenn. 317
B-12226.2.2.1.5 IGraphicsCapableObject........ccccceevrvennne. 317
B-1.2226.2.2.1.6 IGraphicsObjectlteratorc.cccevvrrvennne. 317
B-12226.2.2.1.7 1GraphicsObjectSystemccc.cceevrverurnnn 318
B-12226.2.2.1.8 IGraphicsSceneManagercccccevverurnne. 318
B-12226.2.2.1.9 1GraphiCSVIEWccccvevveieiiieiieie e 319
B-1.2226.2.2.1.10 IGraphicsViewlteratorc.cccceevrrvennne. 320
B-12226.2.2.1.11 IProcessableGraphicsObject...........c......... 321
B-1.22.3 ULility INCIUdES.......ceeeieecieece e, 323
B-1.22311111 CSASI ..cccooiiiiiiiiiiieiere e 323
B-12231.1112 IHEratorccccoviiiiiiiiiieieeeseenie e 334

XX

APPENDIX

B-122311113

B-123

B-1231

B-123111111

B-123111112

B-123111113

B-123111114

B-123111115

B-123111116

B-1232

B-123211111

B-123211112

B-123211113

B-123211114

B-123211115

B-124

B-124111111

B-124111112

B-124111113

B-124111114

B-124111115

B-124111116

B-124111117

Dynamic View.............

Initializeoo........

Component View.........

Page

VectorBasedlteratorTemplateClass 335
... 337
... 337
Initialize Al2 Systemcccoeviiieiiiiinnnn, 337
Initialize Al Systemccccoeveveiiieiveiiennnn, 340
Initialize Graphics 3D System 343
Initialize Graphics Systemcccceevennen. 346
Initialize Object System...........cccocevvriinnenn 350
Initialize Game System...........cccccevevveienen, 353
... 356
Tick Al SYStemM ...c.ooviiiiiceeee, 356
Tick Al2 SysStemcccocvvviiiniiieiceenn 362
Tick Graphics 3D Systemc.ccceeveiennen. 367
Tick Graphics System.......cccccevevvveivciiennn, 373
Tick Prototype Game System 379
... 380
Al SYSIEM 2. 380
Artificial Intelligence........cccccevvvivevviiennn. 380
AUAIO. .o 380
Game SYStEMc.ooveiiieiie e 380
GraphiCsScvevviieieece e, 381
Graphics 3D Systemccccccvveevvereciennn, 381
NETWOTK......oiiiiiiiiiee e 381

XXi

APPENDIX Page

B-124.1.1.1118 Object& Object Management System (Data)
381

B-124111119 OGRE Graphics Engine..........c.cccceevrrurrnnn. 381

B-12411111.10 Physics COmponent........c.cccccervrrurrveruennn 382

B-1241111111 UserInterface.........cccorimimininicncnen. 382

xxii

LIST OF FIGURES

Figure Page
1 - Rollings” and Morris” Game ArChiteCIUIE.........oeuiiiiiiee e 2
2 - Object Centric VIEW Of GAMESccvviiiiiiie et 4
3 - Current Object Centered COTS APPFOACH........cccveiiviiii e 5
4 - Object/Class Level Separation Of LOGICcovierirerininieieiene e 12
5 Rollings’ and Morris® Game ArChiteCtUre..........coevveiiiie s 15
6 - Screenshot from the Game SEArCraftcccoovveieiiiicie e 24
7 - Screenshot from Unreal TOUMMAMENTooviiiiieiiiiesee s 26
8 - Screenshot Unreal Tournament 2004c.oooiiiiiinininieeeee e 26
9 - Playing Starcraft Use Case DIagram.........ccocueueiierenieseeneeie e 28
10 - LOQICAI MOUUIES ...ttt 29
11 - Select Object (Subsystem INtEractions)...........ccevverueiieerieeresiee e 31
12- A Simple Layered ArChiteCtUIE........ovoiiieece e 35
13- DAA FIOW ... 37
14- Data Flow at the Component LEVEl (Al)ooveiieiieiieceece e 38
15 — Data CENTEIEA.......couiieeeeee ettt 39
16 — Select Object (Logical Module Interactions — Data Centered)cccccceevveinenee. 40
17- Independent COMPONENTScoiveiieeieiieiie e ettt re e sraesae e sreeeeenes 42
18 - Layered and Data-Centeredcooveieeieeieiieseeee e se e e e 45
19 = REPOSTIONY ..ttt bbbt b bbbt 46
20 - Data Centered System Of SYStEMS........ccueiiiiiiiiiie e e 51

Figure Page

21- Intelligent Data System Centered System of SyStemSc.coccvviveveeieniieineie e 52
22 — System Defined as a Domain-specific Component & the Object Component.......... 53
23 - Ticking the Game System Of SYSEMScoiiiieiiiriinie e e 55
24 — Example Peer to Peer Networked Gamecccevveveiieiicie s 56
25 -Example Client Server Networked Gamecccoevveieiieneeie e 57
26- Potential Design using many Al SYSTEMSccoiiiiririnieieere e 59

27 — Interfaces Required to Connect Domain-specific Component to the Object
Management COMPONENTiiiiiiiiie e ree e res 62
28 — Example Sequence of Connecting a Domain-specific Component to the Object
Management COMPONENTcoiiriiieiie et nne s 62
29 — Interfaces Required for Domain-specific System To Request Objects to Process.... 64

30 — Example Sequence of a Domain-specific System Requesting Objects to Process.... 65

31-Potential Design using a Domain Observer ODJECT.........cccccvevevivereeieceese e 66
32-Potential Sequence using a Domain Observer ODJeCtcccvvvvevieeenieennee e 67
33 - TiCk Game SYStEM USE CaSEvveiuriiiieiiieiie e itie sttt ste et sae e nte e e ns 70
34 — TICK GraphiCs SYSIEM.......ccieiiieie ettt sre e s 71
35 — Update View COMPONENE SEQUENCEccvveivreieeieerieeiesieesieeeesee e esaesaesaeeseesseesseanes 72
36 — Update View — Classes and INterfaces.........ccoovvuereriesieeniiie e e 73
37 — Prototype SUDSYSEMS......c.viiiiie et 75
38 — Analysis of Object Data REQUITEU..........ccceeiveiieiieiece s 77
39 - Example: Graphics3D System INtErfaces.........ccoovvvevieiieiieie e 79
40 — Interfaces Into the Graphics 3D SYSTEMccoiiiiiiiiiiiecee e 80

XXIV

Figure Page

41 — Interfaces the Object and Object Management System Must Implement in order for

the Graphics 3D ComPONENt t0 USE ML,ccvviiiiiiierie e 81
42 — Connecting the Object Component to the Graphics3D Component.............c.cce...... 82
43 — Prototype Sequence: Tick Graphics2D SyStem..........ccccvvevveieiieieeie e, 83
44 — Screenshotl from ProtOtyPe.......cciueiieie et 84
45 - Screenshot 2 from ProtOtYPeooeieiiiieieeere e 84
AB T ANAIYSIS. ...ttt bbb b b e reeneenes 107
A oo [Tor= 1Y oo [V LSS 109
48 1 USE CaSE MOUEN......ceiiiiiieiicee s 111
e B 1= | 11 o TP TSP PP PSR 112
50 1 OPLIONS IMENU ..ttt sttt sttt sttt e sbeebeeneesbeenbesneenreas 114
51 1 Play StarCraft...........coiiiiiiie e 117
52 : Analysis: Attack Unit (Logical Modules Involved)...........cccevveiiiienicie e, 118
53 : Design: Attack Unit (Component SEQUENCE)ccurvririeierienienieniesiesiesieeeeee e 121

54 : Analysis: Change Map Display Area by Moving Mouse to Edge of Screen(Logical

MOAUIES INVOIVEA).......eeiieiecec et ste e e nne e 124
55 : Design: Change Map Display Area (Component SEQUENCE)ccvevveevereerueereenenns 125
56 : Analysis: Gather Resources (Logical Modules Involved)c.ccoconiiiiiciennnn 127
57 : Design: Gather Resources (Component SEQUENCE).........oieeruererreerienieesieenieseeseens 130

58 : Analysis: Give unit an order by clicking order button (Logical Modules Involved)133

59 : Design: Give unit an order (Component SEQUENCE).......c.ecverueeeereerieeieseesieeeeseeas 135
60 : Analysis: Move to Location (Sub-system INteractions)cc.ccocevvererieninnienieennenns 137
61 : Design: Move to Location (Component SEQUENCE)ccvereeruereerieenienieseenieseeseens 140

XXV

Figure Page

62 : Analysis: Research Technology (Sub-System Interaction)..........ccccecveveviieiveiiennn, 143
63 : Design: Research Technology (Component SEQUENCE)........cccovererererereeeeieennenns 144
64 : Analysis: Select Object (Logical Modules Involved)..........cccccooveviiiieiiiiiiiciiei, 146
65 : Design: Select Object (CompPONeNt SEQUENCE)cvveevveeieiieiieeee et sre e 148
66 : Tick Starcraft Game SYSIEMc.vcieiieiieie st 153
67 2 TICK AL SYSTEIM L.ttt 155
68 : Design: Tick Al System (COmpPONENnt SEQUENCE)........c.eevereerienerrieenieeiesieenieseeseeas 156
69 : Design: Navigate Map - Pathfinding (Component SEqUENCE)cccevvevveevennen, 157
70 2 TICK AUCIO SYSTEIM.....eiiiieieeiesee sttt re et e e e e nteeneesseesaeeneenneas 161
71 : Design: Tick Audio System (Component SEQUENCE).........c.ccververrererenierenieeeeeeneens 162
72 2 Tick Graphics COMPONENT........ciuiiieiieieeie ettt sae e nreas 164
73 : Design: Update View Object (Component SEQUENCE)c.ccvevereerieereeieesieareennnas 165
74 : Design: Update View - (COmponent SEQUENCE)eevveevereerireieseesieeeesseesaesseessens 167
75 : Design: Update View (Class-Interface SEQUENCE)ccoveevveiiviienieiiesienie e 168
76 > Tick NetWOrk COMPONENTocveeiiiie ettt 173
77 : Design: Tick Network System (Component SEQUENCE).........ccvevevvereeeieseesieeienneas 174
78 2 Tick ObJect COMPONENTeiieieeie ettt e e ssaesaeenaenneas 176
79 : Design: Tick Object / Game Logic System (Component Sequence)............ccccuevee. 177
80 2 TICK UL COMPONENT.......oiiiiiiiieiteeie ettt nbe e nneas 179
81 : Design: Tick User Interface (Component SEQUENCE)ccceevvveeereerieeieseesieeienneas 180
82 1 USE CaSES MOUE ...t 182
83 1 Play Unreal TOUMMAMENT.......ccoiiiiiiiieieie e 183
84 : Analysis: Collect Item (Logical Modules Involved)cccooveiiiiniiiiiiincciee, 184

XXVi

Figure Page

85 : Analysis: Move (Logical Modules INVOIVed)cccccoveieiieiieiiciece e 186
86 2 DESIGN: THCK. ..ttt 188
87 T TICK Al SYSTEM ...ttt sttt st nbe e nreas 191
88 : Design: Tick Al System (Component SEQUENCE)........cecvereeieeieiierieeieseesie e e 192
89 1 Tick AUAIO COMPONENTeiviiiieie ettt reeste e snaesaeeneenneas 194
90 : Design: Tick Audio System (Component SEQUENCE).........ccccuerververrerenereseeeeeeneens 195
91 : Tick Graphics 3D COMPONENTciierieiieiierie e e ettt see e nreas 196
92 : Design: Tick Graphics 3D Component (Component SEQUENCE)ccvevreerveereennns 197
93 : Design: Update Main Play View (Component SEQUENCE)........ccevvereeervereereereenenns 199
94 : Tick Network COMPONENTccuoiiiiiiieieieie et 201
95 : Design: Tick Network System (Component SEQUENCE).........ccervereerieneeneenienieneens 202
96 : Tick ObJect COMPONENTciieieiieie ettt reenae e nreas 204
97 : Design: Tick Object Component(Component SEQUENCE)ceeververeeeveseerieereeneens 205
98 : Tick PhySiCS COMPONENL........ciuiitiiiiiiiiiieieie sttt 207
99 : Design: Tick Physics Component (Component SEQUENCE)c.cvververeereenieniennenns 208
100 : Prototype Logical ArchiteCtUreccvcveiieie e 218
101 : Required ODJeCt INTEIfACES.......cccveceeiicie e 219
102 : Programming UtilitiesS LiDrary.........cccooooiiiiiiiiiieecec s 222
L03 2 SYSTBIMS. ...ttt ettt b ekttt e s an e b e e kb e et e e sae e e be e nnn e re e 223
104 : Al Component - Example Implementation..............cccocoeiieieiieie e, 224
105 : EXPOITEA ClASSESecvvevieeieiieeieeie st sie ettt et e e e et e e e ae e sraenaeanaenneens 225
106 : Private Al System IMplementation ..o 227
107 : Al Component - PUDIIC INTEITACESccueiieiiie e 231

Figure Page

108 : Interfaces Object System Can Use To Communicate With Al System................... 232
109 : Interfaces The Object System IMPIEMENTS..........ccoiriiieiiieie e 234
110 : AlI2 Component - Example Implementation...........ccccooeveieninniene e 238
R A 7 o To] (=10 IO P2 -SSR 239
112 : Private Al2 System Implementationccccceveiieieiiesieece e 241
113 : AI2 ComMPONENt = INTEITACES.civiiieeieeieieree s 245
114 : Al2 Interfaces Object System Can Use To Communicate With Al2 System.......... 246
115 : Al2 Interfaces The Object System Implementsccccoveveeieieeve e, 248
116 : Game Object Component EXported Classes.........ccovvrverieeresiiesieenesieseesie e, 252
117 : Private Game Object Component Implementation..............cccccocevvrininnniieicniennns 254
118 : Game Object System - Data StrUCTUIESccevverieiiiie e 275
119 : Game Object Component - INtErfacesccoevvevieiiiie i, 278
120 : Game Object System - Al Interface Implementations.............cccccvevveieivececeennnnn, 279
121 : Game Object System - Al2 Interface Implementations..............ccocvvvvvriniieicniennn, 279
122 : Game Object System - Graphic Interface Implementations..............ccccceeveriennenn. 280
123 : Game Object System - Graphic3D Interface Implementations...............ccccce...... 280
124 0 GAME SYSTEIM.....iiiiiiiie ittt b et b e e sbb e e nbr e e s be e e abeee s 281
125 : Graphics3DComponent - Implementation............coceoeereneneieneseseeeeeee s 284
126 : EXPOITEA ClASSESoveiviiiie ittt sttt nne e 285
127 : Private Graphics3D System Implementationcccocveveiiieieeve e, 287
128 : Graphics3DComponent - INTerfaces.........coevviiriiieieee e 293
129 : Interfaces the Object System can use to communicate with the Graphics3D System

XXViii

Figure Page
130 : Interfaces The Object System IMpIEMENtS........cccvveiviieiiicie e, 297
131 : Graphics Component - Implementationcooeeerenenciese e 302
132 1 EXPOITEA ClASSESoveeeiiiieiiieieeiie ettt sttt nre et nne e 303
133 : Private Graphics System Implementationccccveeeiieieiieie e, 305
134 : Graphics Component - INtEIrfaCES.cccvvivereiiieciese e 312
135 : Interfaces The Graphics System IMplements..........ccooveieneniieniieeeeees 313
136 : Interfaces The Object System Must Implement............ccooeveriiieninin e, 315
137 2 ULHHEY INCIUAES ...ttt nne e 323
138 1 INILIANZE ... 337
139 : Design: Initialize Al2 System (COmpoNnent SEQUENCE)ccververververierierieeieeeeeees 338
140 : Design: Initialize Al2 System (Class-Interface SEQUENCE)ccvvrerieerieiennnnnn, 339
141 : Design: Initialize Al System (Component SEQUENCE)ccvvevereerieeiesieeiie e, 341
142 : Design: Initialize Al System (Class-Interface SEqUENCE).........cccvevvriierverieiiennnnn, 342
143 : Design: Initialize Graphics 3D System (Component SEQUENCE)ccvevervevenes 343
144 : Design: Initialize Graphics 3D System (Class-Interface Sequence)..................... 344
145 : Design: Initialize Graphics System - (Component SeqUENCE)...........ccceverreereennenn. 347
146 : Design: Initialize Graphics System (Class-Interface Sequence)...........cccccvevvene.n. 348
147 : Design: Initialize Object System - (Component SEQUENCE)ccvvrvrvrvereereennes 351
148 : Design: Initialize Object System (Class-Interface Sequence)cccocevereenenn. 352
149 : Design: Initialize Game System - (Component SEQUENCE)ccceevvvreerreerieareennnnn, 353
150 2 THCK .ttt bbbttt bbbt n e 356
151 : Design: Tick Al System - (COMPONENt SEQUENCE)covverveverrerierieriesiesieeieeeeneeees 357
152 : Design: Tick Al System (Class-Interface SEQUENCE)cevvrerreererinieeiesee e, 359

XXIX

Figure Page
153 : Design: Tick Al2 System (Component SEQUENCE)........c.ccvververeereeriesiesieereeaeenneans 362
154 : Design: Tick Al2 System (Class-Interface SEQUENCE)cccoververerierinieieieiees 364
155 : Design: Tick Graphics3DSystem (Component SEQUENCE).........cceervererrieeruerernnnn 367
156 : Design: Tick Graphics3D System (Class-Interface Sequence)cccccveveennen. 369
157 : Design: Tick Graphics System (Component SEQUENCE)ccvevveervererrieerieaeennnnn, 374
158 : Design: Tick Graphics System (Class-Interface SEqUENCe)cocevvvrvvveriennenne, 375
159 : Prototype Component MOGEL...........cooiiiiiiiiiiieiee e 380

XXX

1 INTRODUCTION

1.1 Motivation

Electronic games are a billion dollar industry developing software system
commonly reaching into the millions of lines of code (“3 Million”), but the development
process remains very much unchanged from the early days of programming (“A $30
Billion Industry”). It’s not unusual for development houses to move from the game idea
directly to coding, where the success or failure depends almost entirely on the skill and
experience level of the developers (Rollings 164-165). A base architecture that unifies
the interaction between game subsystems and still allows for flexibility and expandability

could greatly impact development the electronic entertainment industry.

1.1.1 The current Approach and Its Shortcomings

The current approach is to design and develop a custom architecture for each
game. A game development house may carry over portions of a design from one game to
another, but this is usually the result of individual experience rather than a formal design
approach. So while skilled developers are still able to achieve the desired results, it is
rarely on time and on schedule (Fristrom).

One problem with such an ad hoc approach to creating a game architecture is that
quality attributes like flexibility and expandability are rarely incorporated in the design.
For example ID™ software ended up rewriting almost all the code when moving from the
game Quake™ 3 to Doom™ 3 (Sloan). Both are first person shooters, with the same
game play. In fact the only noticeable difference is improved graphics. Since the game
is primarily a graphical improvement, then the obvious culprit is the existing architecture

didn’t lend itself to expandability. 1D’s™ experience is definitely not unique. Countless

companies waste time rewriting music code, GUI code, etc. simply because the existing

code doesn’t fit into the new game.

Physics
Engine
Configuration -
System . Graphics
ame
/ i Level
- Miscellaneous
Menuing Online Logic
System Help Engine |
User Graphics Sound Music
Interface Engine Engine System
‘ Input ‘ ’ Graphics ‘ ‘ Audio
HARDWARE

Figure 1 - Rollings’ and Morris® Game Architecture

Rollings and Morris, the authors of Game Architecture and Design, reviewed
existing game architectures, and attempted to map out a possible separation of logic (see
Figure 1 above). While the component layout from Figure 1 may work for a game, |
would argue the webbing of interrelated dependencies among subsystems would greatly
limit the amount of expandability and re-use between game projects. A suitable

architecture should not only have a logical separation of sub-systems, but also allow for

any of those sub-systems to be easily swapped out or modified without breaking the
overall system.

Part of the reason most attempts at a game architecture have a great deal of
interdependencies is because of underlying object-centric view of games (see Figure 2
below). Games have always been about game objects living in a virtual world. Game
objects have their own behavior, draw themselves to the screen, and even make their own
sounds. This view makes sense logically, and seems to follow the widely accepted
object-oriented paradigm. This view, however, is starting to show its limitations as the
complexity for such functionality as drawing and thinking continue to climb
exponentially. Such complexity has made game objects unwieldy and difficult to design

around.

Game

+Manages 1

0.~

Object contains code GameObject

for drawing, behavior, |- - - ___ ;;;:]
physics, etc.

Figure 2 - Object Centric View of Games

1.1.2 The Migration to COTS

Software practices in games are undergoing a massive revolution. Games are
approaching the production value of blockbuster movies, but without the same level of
modularity and outsourcing. Movies are created by a several individual companies each
specialized in areas like sound, special effects, etc. This level of separation of labor
results in outstanding quality, and the ability to plan a timeline down to the actual camera
shot. Games are just beginning this transition from 100% in-house code, to more of a
Component Off the Shelf (COTS) based approach (Adolph).

Migration to COTS based systems is the first step in improving games on a
massive scale. Allowing companies to focus on a single specialty means software
technology can advance at a faster rate, and those advances are available for more games
to use. While using COTS components can improve quality and time to develop (Alves
et al. 1), staying with the current object-centric view means components are rarely more
than functional libraries designed to help the object operate. Game objects are still
responsible for all their own data manipulation including: graphics drawing, artificial
intelligence (Al), sound, physics, etc. While games will still benefit from the technology
COTS offers, it still means game objects are extremely large and complex. It also means
game object developers must have a very strong knowledge about all the COTS

components they are using to implement that object (See Figure 3 below).

cd Existing COTS Use Model/

8l 8l l

COTS1 COTS2 COTSn

. o alls functionality in Calls functionality in
Calls fungtionality in

Game Object

Figure 3 - Current Object Centered COTS Approach

The object-centric view also limits re-use, even when using COTS components.
The object code is the least re-usable when moving between game projects, but it is the
object code that contains the calls to the various components. So when moving from one
project to another, developers will often have to re-write those same interactions. While
a well-designed class hierarchy can mitigate much of that risk, the objects are still
strongly tied to the COTS components they use. | propose there exists an architecture

that can further increase code-reuse while reducing coupling.

1.1.3 Not a Game Engine

A common trend emerging in the game industry is the introduction to the all-
encompassing COTS “game engine”. Development houses can purchase very powerful
“game engines”, allowing the developers to develop a game using a commercially proven

game framework. While this approach is an outstanding example of code re-use, it can

limit the flexibility of the developers to design the game of their choosing. “Game
engines” can limit the developers in a variety of ways.

e Limits due to engine design — “Game engines” were built with an initial game
in mind, and the completed design reflects this intent. Trying to use
the UnrealEngine™, the game engine used to create the first person
shooter game Unreal™, to create a console style football game may
prove to be a very laborious task.

e Limits due to cost — “Game engines” can be very expensive. Top-tier game
engines can cost in the hundreds of thousands of dollars (“3D
Engines”). The decision to use such an engine means the game
developed must be mass marketable in order to recoup that large
initial investment. Unfortunately, in order to have mass market
appeal the developer has significantly reduced options in what kind
of game to create.

The intent of this thesis is to design at a higher level of abstraction than the design
of game engine. This is not to say a reusable commercial game engine could not be
developed using the proposed architecture, but the distinction should be made between an

architecture and a fully fleshed out system design.

1.2 High Level Objectives and Goals

The main objective of this thesis is to design and prove there exists a software

architecture that is both expandable enough to grow with the technology and flexible

enough to support the diverse world of games. Such an architecture would provide a
starting place for game developers to begin from, and perhaps the start of a standardized
communication between components used in a game system. A successful architecture
will scale with the complexities of today’s games, without sacrificing the developer’s
creative control over the game project. To achieve this rather lofty goal, the resulting

architecture must fulfill the following requirements:

1.2.1 Architectural Requirement: Support COTS-Based Development

First the architecture must have strong separation of logic. The idea is to more
completely separate the logic such that game subsystems can be independently developed
and tested. This requirement is consistent with COTS based systems, and this thesis
intends to continue with the COTS based approach.

In order to verify the resulting architecture meets this requirement it must be
demonstratable that components can be independantly developed and tested. These
components should be easy to integrate into a game application without a great deal of re-
write on the part of the game. Ideally components will integrate in a similar yet logical

fashion.

1.2.2 Architectural Requirement: Better Knowledge Localization

The architectural requirement of better knowledge localization exists because of the
diverse capabilities required in games. Modern day games require outstanding graphics,
realistic physics, mind-bending artificial intelligence, and theater quality audio. Even if
the game developer is using COTS components to provide those capabilities, he/she must

still acquire a large amount of domain knowledge in order to use the components

properly. The simple fact is game developers are forced to become experts in various
technical fields when they should be focusing on developing gameplay.

The required level of domain knowledge is only going to increase as game
technology advances, and an attempt to resolve this issue must be made soon. This thesis
will endeavor to not only identify the commonalities between component interfaces, but
also provide a design that minimizes the required component API understanding in order
to use a COTS component.

In order to verify the resulting architecture meets this requirement the architecture
should demonstrate a reduced API into the component itself. The technology
components should also integrate into a game without requiring the game programmer
understand the domain in order to use it. This eliminates the possibility of writing

technology components a functional libraries.

1.2.3 Architectural Requirement: Flexibility / Modifiability

Flexibility is key to the future of game development. Due to rising production costs,
the ability to mix and match re-usable software modules is critical to keeping costs down.
The proposed architecture should be game genre and technology independent allowing
developers to create a variety of games using various technologies. In order for this
architecture to make an impact on the games industry, it must be flexible enough that any
game project can use it.

In order to verify the resulting architecture meets this requirement it must be possible

to demonstrate that very different games can be written using the final architecture.

1.2.4 Architectural Requirement: Expandability / Maintainability

Another critical architectural requirement, due to rising production costs, is
expandability and maintainability. Successful games often have new incarnations with
expanded game play and updated technology. For example, Blizzard’s™ successful
game Warcraft™ is currently on its third iteration with Warcraft™ 3. The new game
features added game play elements like powerful heroes and beautiful 3D graphics, but
the underlying game is still very similar. A successful architecture should easily allow
for this type of game evolution.

In order to verify the resulting architecture meets this requirement it must be possible
to demonstrate the architecture can easily support new or updated technology as well as
new functionality. For example it should be easy for developers to move a 2D game to

3D graphics without a massive overhaul.

1.2.5 Performance and Other Quality Attributes are NOT Requirements

It may seem odd to not include performance as a key requirement when designing an
architecture for a domain that demands such a high degree of performance. The reason
for this stems from the belief that performance is far less significant at the inter-
component communication level than it is within the subsystem itself. For example, the
graphical rendering loop to draw the 10 million triangles of an object is far more
significant to performance than the single inter-component communication telling the
graphics system to draw the object. Performance will not be ignored in the design

process, but the previously stated required quality attributes will carry a higher priority.

10
Other quality attributes, like reliability or portability, are also not ignored. The scope
of this thesis, however, must be limited to qualities that can be verified and validated
within the allotted time frame. Follow-up work would be to use the SEI’s architectural
tradeoff analysis method to determine how these other quality attributes are supported by
this architecture. So for the purposes of this thesis, only those qualities deemed most

important became a requirement.

1.3 Contributions

The primary contributions of this thesis are the following:

e A better understanding of games as systems. The artifacts created in this thesis
will provide insight into what subsystems are involved in electronic games and their
boundaries.

e An architecture that supports easy development and integration of COTS
components for electronic games.

e An architecture that supports localization of domain knowledge, relieving the
requirement for game developers to become experts in everything.

e An architecture that supports flexibility and expandability in game development
by allowing developers to easily add/remove/modify game technology components.
e An architecture that support expandability and maintainability allowing

developers to more easily expand a game into a future incarnation.

2 LITERATURE REVIEW

2.1 Current State of Game Development in Literature

There are currently dozens of books available on the subject of game
development. Most, however, cover in great detail a specific topic in game development
rather than an overall architecture. While these books definitely have their purposes,
there doesn’t exist any literature on how to properly organize these tidbits of knowledge.

Kevin Hawkin’s and David Astle’s book OpenGL Game Programming is a good
example of a typical game programming book. The book covers some of the many
graphics obstacles present in game development and how to use the OpenGL API. The
book discusses 3-D math, lighting, texturing, transformations, and other topics of interest
in programming 3-D graphics. After finishing this book the reader will have a solid
understanding of graphics and the OpenGL API, but using this knowledge within the
context of a complex system such as a game is still a mystery.

While the book is very well written, and covers the technical details involved in
pushing pixels with OpenGL, it gives almost no architecture or design information. The
book uses examples with a very monolithic design. A single game object will contain
everything - graphics code, Al, physics, etc (See Figure 4 below). While this approach is
fine for teaching the details of a game feature, it is HUGELY inadequate for a real game.
The simple separation of logic at the class level just isn’t enough for projects that can

reach into the millions of lines of code.

Although the logic
may have been
broken into
sub-classes, the object
is still ultimately
responsible for
drawing, Al, physics,
etc.

D

Game

+Manages 1

0..*

GameObject

Tick() : void ;

Draw() : void
CalculateBehavior() : void
MakeSounds() : void

Mesh Object

AN

Skeleton

Texture

Figure 4 - Object/Class Level Separation of Logic

In order to see the many problems with such a microscopic approach to

12

architecture, consider some of the issues game developers regularly face. First the design

gives no insight into issues like portability, a very real concern for businesses interested

in the various consoles as well as the PC. Next the code is not re-usable because objects

are tightly coupled to their behavior. The design is neither flexible nor maintainable

because this design is VERY tightly coupled and changes you make have the potential to

affect the entire system.

13

Rudy Rucker’s book Software Engineering and Computer Games makes an
attempt to teach game development with a reusable architecture. The book creates a
“Document/View” game framework. The emphasis is on the framework, as it is possible
to create many different games by simply expanding the author’s “pop” framework.

The book introduces how design patterns can be used in a game context, and why
re-use should be important to a game developer. The author uses the document/view
architecture to separate the data from the drawing code, thus allowing changes to the data
without touching the visualization code.

While this framework has a great deal of flexibility in terms of game objects, it is
still quite limited. Al and physics are still left inside the objects making changes to those
areas very difficult. And while the graphics are somewhat separate from the objects, the
author still uses direct access between the graphics and the data making the components

both very dependant upon each other, and not quite staying true to the architectural

model.

2.2 The Latest Book Trends in Game Development

The latest trend in game books is the “gems” like books. Books like Game
Programming Gems and Al Game Programming Wisdom offer developer ready nuggets
of wisdom. Snippets of code that offer very good solutions to difficult problems
commonly found in game development. These books present low level solutions, usually
in the form of a C++ class or two, that solve problems game programmers face everyday.

These books are an incredible resource because almost all their “gems” are

architecture independent. They are solutions aimed squarely at helping the programmer,

14
not the system architect. So while the books are an excellent resource to any game
developer, the solutions could not be strung together to form a coherent architecture.
Developers can use the solution to solve a specific problem, but they may not understand

WHERE the solution best fits into the overall system.

2.3 The First and Only Real Attempt at Game Architecture

Andrew Rollings’s and Dave Morris’s Game Architecture and Design is the only
book on the market right now that discusses games in terms of their architecture. The
book proposes to design around the quote by Dave Roderick, “A game is just a real-time
database with a pretty front end.” While that statement might seem correct, this thesis
proposes the slightly modified statement — games are a system of systems operating on a
database with a pretty front end.

The book gives an excellent introduction into the roots of game development and
why architecture and software engineering practices have never really taken hold in this
area of software. The authors attribute the lack of engineering practices to the origins and
attitudes of game developers. Games originated from solo programmers who hand coded
every line, and that solo attitude still prevails in the industry today. Not using third party
components is still a point of pride for many developers.

While the authors provide an excellent history of the game development process,
the book really doesn’t spend much time on architecture (despite the fact that
“architecture” is in the book’s title). The book proposes an architecture for a game, but
really doesn’t provide any insight as to how the components communicate, or even why

the proposed architecture is suitable and useful.

15

Physics
Engine

Event
Handler

Configuration
System

Menuing Online Logic /
System Help Engine |

Graphics

Game

Data Level

Miscellaneous

User Graphics Sound Music
Interface Engine Engine System
‘ Input ‘ ’ Graphics ‘ ‘ Audio
HARDWARE

Figure 5 Rollings’ and Morris’ Game Architecture

2.4 Software Architecture

In order to properly design a flexible and expandable architecture for games, it is
not only necessary to understand games, but also software architecture in general. Len
Bass, Paul Clements, and Rick Kazman wrote Software Architecture in Practice as a very
good introduction to software architecture. The book uses clear English to explain what
an architecture is, as well as the concepts involved, including architectural style,

reference models, and the reference architecture.

16

Software Architecture in Practice defines many of the quality attributes associated
with an architecture, as well as what styles are best suited to each attribute. This book
should prove useful when work begins on designing the proposed architecture. The
reference offers a great deal of information that should help narrow down the search for
architectural candidates.

Another book that provides some very useful insight in designing an architecture
is Designing Flexible Object-Oriented Systems with UML by Charles Richter. This book
provides many simple techniques to identify design flaws that can affect flexibility. The
author teaches some guidelines to increase cohesion and decrease coupling, the
advantages and disadvantages of class generalization and specialization, and an analysis
of specialization versus aggregation. Richter also gives insight in how to analyze
dynamic diagrams (e.g. sequence diagrams) for flexibility.

Richter’s book should provide the litmus test for the flexibility in my design. He
provides an informal, but effective way to quickly assess a design in terms of flexibility.
Once the design has passed this informal inspection, a more formal approach can begin

and the demo can be built.

3 THESIS METHODOLOGY

This thesis takes a pretty straightforward approach to arrive at the desired
architecture. The first step is to analyze and understand games as software systems using
standardize software engineering practices. Only looking at a few select games will scale
this monumental task down significantly. The analysis will be further limited to
identifying the functional modules and their interfaces. This level of analysis should
provide enough of an understanding to begin the design work for the architecture.

The next step is to identify candidate architectural styles that have the quality
attributes games require as identified in the “High Level Objectives and Goals” section of
Chapter One. This step should yield architectural styles that should be considered when
constructing potential architectures.

Once the preliminary research has been completed, the architecture design can begin.
This involves incorporating various architectural styles into a design until the architecture
can support not only the architectural requirements from Chapter One, but also the
functionality Identified during the analysis phase. Through design trial and error, and
architectural analysis techniques a proposed architecture should emerge.

After the proposed architecture has been designed, it is time to prove that it can
work. The first step to proving the architecture will be to apply the architecture in the
form of a simple design to the analyzed games. This will help to validate that the
architecture can support the types of systems it was intended for. The next step is to
actually build a game-like system to demonstrate the quality attributes. Unfortunately
designing a commercial quality game to fully demonstrate the capabilities of the

architecture are beyond the scope of this thesis. A demonstrative subset of game

18
functionality, however, will be put together into a prototype to show some of the more
important features. A prototype will also have the added benefit of helping to refine the

architecture into a more correct state, as well as identify some of it’s limitations.

3.1 Analysis of Games as Software Systems

In order to design an architecture for the games of tomorrow, we must first
understand the problems faced today. As noted in the literature review section, there
exists very little documentation on the subject of architecture in games. Since more
information is required, more creative approaches to analysis will be taken.

Since actual documentation on architecture in existing games is virtually non-
existent, we will do the next best thing — understand the design of a game similar to
existing games. The approach is simple. Treat an existing game as the customer
requirements, and attempt to design a game that meets those requirements following
standard software engineering practices. Performing this process for several games
should provide a satisfactory understanding of what is required in an architecture to meet

the needs of those existing games.

3.1.1 Selecting Games to Analyze

Since the goal of this thesis is to construct an architecture that will meet the needs
of most electronic games, more than one game must be analyzed. In truth, such an
architecture would require a thorough understanding of every possible game created.
Due to the constraints of a temporal existence, this thesis will attempt to refine the search

space into something more manageable.

19

Rather than analyze every existing game, existing games will be divided into
categories where a single title could be selected to represent all games in that category.
Fortunately the electronic games industry has already categorized titles into genres and
we merely have to locate games representative of their genres. This approach should
provide the best possible results given the time restrictions.

Game genres can be further divided into sub-categories like single-player vs.
networked, 2-D vs. 3-D, etc. but | propose to show that these subdivisions are expansions
of the same architecture. For example the differences between a 2-D game, and a 3-D
game of the same genre should be localized in the components. However, the types of
components and their interactions should remain the same. In the end | hope to show that

a single architecture is capable of supporting all these genres.

3.1.1.1 Existing Game Genres
e Fighting

The market was successfully introduced to fighting games in 1991
by Capcom and Street Fighter Il. The opportunity to have fantastic heroes
battle in hand to hand combat gave adolescent gamers the opportunity to
connect to unique alter egos, and began the “golden age” of the arcade
(“History of Arcade Games”). Fighting games are among the most
simplistic in nature. They are meant to be simple, fast, and fun.

e First Person Shooters (FPS)

First person shooters were invented in the 1992 by John Carmack

and ID software with Wolfenstein 3D™ (“A Brief History”). The game

20
ushered in a new era of 3-D immersive worlds where players could
explore, and experience the electronic universe in the first person.

This genre is probably the most diverse with games ranging from
single player only, shoot to kill everything games like Doom™ and
Quake™, to massively multiplayer universes like Halo™. First person
shooters are almost always state of the art in terms of technology, and best
noted for their outstanding graphics. Releasing a FPS using last years
technology is a recipe for disaster in the retail market.

e Platform

Platform games are the definitive arcade games. Icons like Super
Mario Bros. ™ and Donkey Kong ™ were among the first to dominate the
scene. Platform games require the player to navigate a character through
various puzzles using a player’s wit and skill with the joystick. Platform
games are a relatively small market on the computer, but they still
dominate the consoles with memorable characters like Lara Croft ™.

e Strateqy

The electronic strategy games of today are simply extensions of
their board game ancestors. Strategy games typically involve intricate rule
systems where player must master tactics and strategies rather than fast
reflexes. Games range from the 2-D turn based classic Civilization™ to

the 3-D real time masterpiece Warcraft™ II11.

e Role Playing

21

Role playing is another genre that has its roots outside the
electronic forum. Role playing games are a form of interactive fiction,
where the player gets to play the role of one or more characters in the
story. One of the staples of role playing games is character advancement.
The character(s) the player controls will continue to grow in skills and
abilities allowing the player to evolve a truly unique alter ego.

e Sports

Simply put, sports games are just the electronic versions of the real
thing. Electronic sports games allow gamers to play the game without
actually having train there whole lives to become professional athletes.
Unhappy with the outcome of the super bowl, challenge your neighbor to

a rematch in Madden 2002™,

Obviously there are games that do not fit into any of these genres or would be
better described as a combination of genres, but these six categories arguably represent

the bulk of electronic games available today.

3.1.1.2 Further Refinement — Isolate Important Properties

Unfortunately, properly analyzing even 6 games is too large of a task for the
scope of this thesis. To ensure this further scaling has a minimal impact on the quality of
the resulting architecture, I’ve decided to isolate the most important features. A

minimum selection of games that covers those features will be chosen.

e 2Dvs.3D

22

2D games are two dimensional games where the character exists in
a two dimensional world. Platform games like Super Mario Brothers™
and strategy games like Starcraft™ are examples of 2D games.

3D games are games that take place in the third dimension. Here
the distinction must be made between two dimensional games using 3D
graphics, like Warcraft ™ 3 and games with fully three dimensional
worlds like Quake™. For this thesis it is important to select a game in the
later category, because it is important to maximize the differences in the
game components. Fully three dimensional worlds require different
physics, Al, as well as 3D graphics.

All games fall under one of these two categories, so the final

selection must include one game from each category.

e Non-Networked vs. Networked vs. Massively Multiplayer

Non-networked games are games that exist on only one machine.
Code and data does not need to be distributed across a network while the
game is playing. Almost all games offer this style of play, allowing the
human player to compete against computer opponents on a single
machine.

Networked games are games where human players can compete

against other human players over a network. Most games of this sort use

23
the simple client/server model and usually have a set maximum number of
players (clients) per game.

Massively Multiplayer Online Games (MMOG) have been around
for a while in many text based multi-user dungeons or MUDs, but have
become very popular in the mainstream with the 3D dungeon romp -
Everquest™. MMOGs allow thousands of players to exist persistently in
a virtual world. Unfortunately due to the scope of this thesis, MMOGs
will not be covered, but definitely represent an area that should be covered

in future research.

e Al -Single Entity vs. Managed or Team

Artificial intelligence in games can be broken into two very simple
categories. Games with single entity intelligence are games where each
game object has its own Al and behaves relative to its own situation.
There is no mastermind or general coordinating the actions of the objects
to form an overall strategy.

Managed or Team Al games expand on the single entity Al model
and add the concept of collaboration between objects. Objects still have
their own intelligence, but a new layer has been added that can view the

game in terms of tactics and strategy.

3.1.2 The Selected Games for Analysis

After a great deal of review, the search has been narrowed down to two games

that exist in to different genres and cover all the important properties. While these two

24
games cannot fully represent all possible electronic games, these two games should
provide a solid foundation given the time constraints and scope of this thesis. This
foundation should be adequate to isolate many of the component interactions and support
the design of an architecture that could support the needs of most games.

Starcraft™ by Blizzard Entertainment

The first game chosen for analysis is the award winning Starcraft™ by Blizzard
Entertainment™. The game features a 2D isometric view and some of the best game play
ever. The game was released in 1998, and has become the yard stick all other real-time
strategy (RTS) games are measured by. For analysis purposes the game was chosen
because it is two dimensional, offers solid non-networked or single player game play, and

a managed Al system.

s

MERL

Ay

Figure 6 - Screenshot from the Game Starcraft

25

Unreal Tournament

Unreal Tournament(tm) by Epic Games Inc. is easily one of the best networked
first person shooters ever. The game offers up to 16 players a chance decimate each
other in a futuristic combat arena. Players enter UT's 3D proving grounds and become
the combatant, taking control of a single character. While newer iterations of UT have
been developed since UT was released in 1999 (“Unreal” 1), see screenshots below, they
are primarily upgrades in technology. Unreal Tournament(tm) was chosen because it
features 3D graphics, networked play, and any Al is primarily centered around a single

entity.

Figure 8 - Screenshot Unreal Tournament 2004

26

27

3.1.3 Analyzing the Games

Having selected a seemingly diverse pair of representative games, we can begin
the analysis process. By designing an architecture capable of supporting these two
dissimilar games, it is the hope of this thesis that the architecture can support the
development of just about any type of game. The analysis will pretty much follow the
standard software engineering practices for system development.

The process begins with understanding the systems requirements, which can be
done by treating the final game as the customer requirements. From the final game, use
cases can be derived and reviewed for further analysis. From that point, we can begin to

find the subsystem interactions that need to exist in the proposed design.

3.1.3.1 Analyzing Starcraft™ Requirements with Use-Cases

The first part of analysis is to understand the requirements of the system we are
trying to build, or in our case merely understand. Since our requirements are based on a
finished piece of software, requirements and use-cases can be harvested from the game’s
manual and from playing the game itself. After a first pass of studying the manual and

actually playing the game, | came up with the following use case diagram:

28

ud Play J

Player

from Use Case Model

Give unit an urd)

Change Map
Display Area

Select Object

Research
Technology

«exténd»

Building
construct Unit

de»

h
1
'
l
d
'
1
'
l

«incll

«extend»

«ext

ather Resource

«include»

«include»

A
«inclui:kx
\\

AR

nd»

Move to Location

7

"

'

’ |
«inélude» H
. |

|

|

|

NAA A

'
I
'
1
'
:

« extfnd»

1
«exténd»

1

1,

«extend»

Attack Unit Jdinclude»
'

Patrol Location

wextend»

«exteéndp

anipulate Objec

Resources

anipulate Player
Resources

«incl

Unit Construct
Building

Stop Movement

Hold Position

de»

Figure 9 - Playing Starcraft Use Case Diagram

29

Graphics Al
User Interface Audio
Netw ork Game Logic

Game Data

Figure 10 - Logical Modules

Based on the details of the use cases in the diagram in Figure 9 above, we can begin
to identify the functional modules involved in the game of Starcraft™. 2D graphics
functionality is needed to render the game objects, the user interface functional module
will capture the players input, and so on. While Figure 10 above is not meant to show the
physical separation of subsystems as a component diagram would, it does show at a high
level what kinds of functionality are needed within the game Starcraft™.

Before we begin analyzing the types of sub-system interactions that need to exist
in the system, however, we must first isolate which use-cases will be used to guide the
analysis. The final analysis of this game, located in appendix A, has very many use-

cases. Due to the time and scope constraints on this thesis, it would be impossible to

30
fully explore them all. To ensure the research is still adequate | based the selections on
some very simple criteria.

First the use-case must be fundamentally important to the game. Since our
original game title selection was based on each game being representative of many other
games, there is no point wasting time analyzing actions that don’t represent those other
games. Second, the use-case must require multiple sub-systems to collaborate. Since the
goal of this next phase is to understand logical module interactions, we can eliminate the
trivial use-cases. In all diagrams, use-cases selected for further elaboration have been

colored a light blue.

3.1.3.2 Understanding the Sub-System Interaction

Having selected multiple use-cases for further analysis we can begin trying to
understand the communication between logical modules required to realize those use
cases. Consider the Select Object use-case from Figure 12. “User left-clicks the mouse
button while the cursor is placed directly over a selectable object in the main view. The
selected object is marked with a green circle and is ready to receive orders.” In
applications using the “document/view” architecture, this use-case is almost trivial to
implement. The view receives the mouse click, determines which object was clicked
based on its screen coordinates, and sends the click event to the object for processing.
The object can then decide to draw a circle around itself or whatever.

At this stage we have not yet decided anything further about the architecture, so
the focus is not to design the interactions as in the document/view example. Instead the

goal at the analysis phase is to understand the “kinds” of interactions, not how those

31

interactions will actually be designed. Consider that same Select Object use-case

following a model-view-controller approach. The “kinds” of component interactions that

need to take place are still

% User Interface

/ICapture Mouse Click

B s |

(from Game Analysis View) (from Functional Modules)

Game Logic Graphics Game Data
/|Receive notification of mouse clic
/IDetermine view the click occurred in
/ICalculate world foordinates of mouse clickwmi view
g
/IGet object that was clicked on
g
/IPerform game logic on objec
/lUpdate dbject data -
i |]
1 1
1 1
1 1
' '
' '
' '
' '
' '
' '
' '

(from Functional Modules) (from Functional Modules)

(from Functional Modules)

Figure 11 - Select Object (Subsystem interactions)

Figure 11 above shows an example sub-system interaction. The trick is to

understand that the diagram above is NOT the design. The “Select Object” sequence

diagram above shows that the graphics system is involved in routing mouse clicks to the

proper object. It does not necessarily mean the Game Logic system calls the graphics

system. Perhaps current screen position is part of the object data set by the graphics

system at a different time. The important thing to note is that in order to determine which

object was clicked, the Ul and graphics systems are involved. Once all the important use

cases have been further analyzed to isolate the kinds of interactions we can begin creating

a potential design. To see other component sequences refer to appendix A.

32

3.2 Identify Candidate Architectural Styles

The next step before we can design an architecture is to consider the architectural
styles that have already been shown to exhibit the quality attributes games require. In its
simplest form an architectural style is a set of components, their constraints, and the
constraints on their communication (Bass et al. 25). By incorporating well-understood
architectural patterns, we are more likely to achieve a hybrid design that will achieve our
goals.

Several architectural styles appear to have some of the desired quality attributes, and

will be reviewed.

3.2.1 Layered

The layered architectural style divides system functionality hierarchical layers where
each layer provides services to the layers above and below it. The layered approach tends
to promote re-use by keeping the application specific code at the top most levels,
allowing developers to re-use the framework below (Duffy). Re-use is directly tied to the

flexibility and modifiability requirements of this thesis.

3.2.2 Data-Centered

The data-centered style is essentially a centralized data store with independent clients
connecting to operate on the data. Data-centered styles offer an easy way integrate
different systems because the clients are independent of each other, and the data store is

independent of the clients (Bass et al. 95-96)

33

3.2.3 Independent Components

Independent processes communicating via messages define the independent
component architecture. Components register the kinds of information they can process,
and communicate through messages (Bass et al. 101-102). One interesting advantage of
the independent component styles is that all components need not exist. The decoupled
communication system is such that published messages may not have any subscribers. A

well-designed system could add and remove functionality at will.

3.2.4 Data Flow

Data flow architectural styles like pipe and filter tend to offer a great deal of re-use,
and are generally easy to maintain and expand (Calvert). By focusing on incremental
transformations of data, systems are very simple to understand and change. Systems can
be easily expanded or modified simply by plugging in new or different data processing
components (Bass et al. 96-97). The notion of effortlessly expanding games by

extending the chain of data processors is very appealing.

3.2.5 System of Systems

The system of systems architecture is the part of engineering work being done to
integrate multiple complex systems. The SoS approach is interesting because both games
and enterprise applications must integrate systems of entirely different domains.
Graphics, physics, Al, etc. are entirely unique domains being used together in a single

application. Another interesting aspect of SoS is the point of view that a system is

34
emergent from the integration of the individual subsystems (“Definitions™). In other
words a game is the result of integrating an Al system, a physics system, etc.

Such a unique view matches one of our initial requirements of domain knowledge
localization. So if a graphics engine is a complete system, and the game is actually the
result of the graphics engine working with other systems, it may be possible to keep the

graphics details hidden from the game itself.

3.3 Architecture Design

At this point both games selected for study have been analyzed such that we have
descent understanding of what logical modules exist, and the kinds of interactions that
must occur to perform the game functionality. The next step is to actually determine the
overall system layout, and how the different subsystem interaction will occur. By
incorporating the various architectural styles noted in Section 3.2 of this thesis, we will
design an architecture that should meet the requirements we have laid out, as well as

support the functional needs common to games.

3.3.1 Choosing a Topology

The first step to developing an architecture is deciding upon a topology. The
topology is the over-all layout of the system, and has significant impact in terms of
modifiability and reusability. The topology determines what logical systems are
connected; thereby setting what coupling may exist. The plan is to see how different
architectural styles can be applied to the logical modules in games, and determine the
affects it might have on the quality attributes the desired architecture requires. While

only one topology will be selected (or perhaps a hybrid of a select few) for further study,

35
those that weren’t selected may provide some ideas that can still be incorporated into the

final architecture.

3.3.1.1 Layered Architectural Style

The first major topology considered was the layered architectural style. The layered
architectural style tends to offer many quality attributes, of which re-usability and
modifiability are most import to our goals. Looking at the simple diagram in Figure 12
below, the game specific code is localized in the top-most layer. By localizing the game

specific logic to a single layer, new games can be created re-using the layers below.

App or Game Layer

Game Logic

(from Functional Modules)

Technology Layer

Al User Interface Physics Audio Netw ork Graphics

(from Functional Modules) (from Functional Modules) (from Functional Modules) (from Functional Modules) (from Functional Modules) ~ (ffom Functional Modules)

Game Data

(from Functional Modules)

Figure 12- A Simple Layered Architecture

The above “start” of an architecture has many problems that ultimately led to the

dismissal of this topology. First, while the architectural approach offers some re-usability

36
between games, it does not appear to offer much re-usability between different types of
games (i.e. different technologies). This view of a layered approach doesn’t offer much
insight in how a developer might move from a 2D platform game, to a 3D first person
shooter. Such a change would require a very different graphics module, a very different
Al module, as well as requiring additional modules that probably wouldn’t exist in a 2D
platform game (like physics).

Obviously this approach could be refined with layers further divided, but the
underlying problem still exists. It isn’t just the game code that is likely to change, but the
technology modules as well. Also due to the fact that different sets of logical modules
may be needed for different games, with potentially different module interactions,

perhaps layering does not isolate likely changes in the best possible way.

3.3.1.2 Data Flow Architectural Style

Data flow architectures offer a great deal of flexibility in that data processors can be
added at will. The problem becomes very apparent, however, when you look at the game
modules in this layout (see Figure 13 below). Game components operate on very
different data. The data pipe connecting these logical modules would have to be so broad
that each module might spend significant overhead parsing and filtering out the large

amount of data that isn’t used (Calvert).

37

User Interface

Al

Audio | Graphics

Physics

Netw ork

Game Logic

Figure 13- Data Flow

The data flow architecture does, however, present some interesting options for the

architecture at the component level. Figure 14 below shows a simple example of how an

Al component could be implemented using the data flow architectural style.

Unfortunately this thesis is focusing on the architecture at the game system level, so this

concept will be left for future research.

38

Al: General Goals Al: General Offense Strategy I_ Al: General Defense Strategy

\ Al: Unit Objectives Al: Unit Path Finding /

T E@

Figure 14- Data Flow at the Component Level (Al)

3.3.1.3 Data Centered Architectural Style

Another major topology of interest is the data centered architectural style. A data
centered approach is typically used to create data integrability. Functional modules are
less strongly coupled, but often at a cost in performance (Bass et al. 96). The data
centered approach minimizes many of the risks identified in the layered approach. First,
the logical modules do not have any direct interaction with each other mitigating the issue
of changing technology. Changing from a 2D graphics logical module to a 3D graphics

logical module should not break the workings of the other sub-systems.

39

cd Data Centered
Al Audio
(from Functional Mo nctional Modules)
Graphics Netw ork

(from Functional Modules) (from Functional Madules) (from Functional Modules)

Physics User Interface

(from Functional Modules) (from Functional Modules)

Figure 15 — Data Centered

There is still the issue of modifiability at the game level. Figure 16 above does not
give any indication of how the developer can minimize the amount of change when
moving from one game to another. In the layered approach, game specific code was
localized to a single layer, making it easy for developers to move between similar game
projects, while the data centered topology doesn’t provide much insight as to how game
specific code could be localized. This issue will continue to be worked as the

architecture is further fleshed out.

40

While using a data centered approach does offer many architectural benefits, it

drastically impacts how game functionality can be achieved. Consider the use case

diagram shown earlier in Figure 11 - Select Object (Subsystem interactions). This simple

act of clicking a button changes dramatically because there is no direct association

between the User Interface and Graphics logical modules. Both figures demonstrate the

same functionality, but the data centered topology has placed some constraints on the

way it can be re

alized.

i

Player

User Interface

/ICapture Mouse CIick»i

(from Game Anal

Game Data

/ISEnd mouse click to object data syste

T
1
1
1
1
1
1
1
1
1
m
L

=
|
|
|
|
|
|
|
|
|
|
|
|

ysis View) (from Functional Modules)

Graphics

/IGet world coords of mouse click

/ISet object as selected

(from Functional Modules)

/IDetermine object under mouse click

(from Functional Modules)

Figure 16 — Select Object (Logical Module Interactions — Data Centered)

3.3.1.4 Independent Components Architectural Style

A game using the independent component architectural style can have any arbitrary

topology because of the style’s restrictions on communication. Regardless of the layout,

independent components remain decoupled because they communicate via messages

41
rather than making function calls. The interesting aspect of this approach is components
don’t know who they are sending to, and don’t necessarily need to wait for a response.
This not only means new components can be added/replaced, but partial systems can be
built with components missing. This means systems can be put together even before all
the components are built, greatly increasing the ability for individual components to be
independently developed.

Figure 17 below shows an example of how a game could potentially be put together
using the independent component architectural style. This rough sketch highlights some
of the strengths and weaknesses of this approach for a game system. The user interface
component as an independent component communicating via messages makes perfect
sense because user interactions really are asynchronous events. When you start to move
to how other components like graphics and Al interact with data, event based
communication makes less sense. Every cycle some game data must be drawn, must
perform Al, and must have some form of game logic applied to it. The overhead of
routing and translating messages becomes significant when the number of messages
approaches some threshold. Due to the sheer volume of data involved in games, and the
synchronous nature between some of the subsystems and the data, perhaps independent
components is not the best architectural style for this domain. It would, however, be an
interesting research project to see just how much the messaging overhead would affect

systems with synchronous interactions like games.

42

Game Logic «object requires game logic event»

«keyboard events»

«object game logic performed event»

«mouse to graphicalfobject action event»

Audio
User Interface Graphics Game Data
«object makes sound events»
«mouse events» «dtaw object eventy|

«object requires{thinking event»

;I

«object thinking performed event»

Figure 17- Independent Components

The qualities achieved by independent components should not be completely
discarded simply because this particular style may not be the best choice. The ability to
put together an incomplete system with components missing is a very useful idea.
Consider a development scenario where the graphics system has not been selected, or is
behind schedule. An incomplete game system consisting of the game logic, data, and Al
could continue to be worked. So even though one of the subsystems cannot be used, the

game as a whole can continue integration work.

3.3.1.5 System of Systems

The system of systems was rejected for the same reason the independent components
architectural style was rejected. Event based communication is just too inefficient for

some of the interactions. The time researching the system of systems perspective,

43
however, was definitely not wasted. The notion that the desired system, a game in our
case, can be emergent as a result of the collaboration of other systems is a very
interesting idea (“Definition”). Just because the arbitrary topology and method of
communication are ineffective for this thesis, doesn’t mean the underlying idea can’t be

used.

3.3.2 Making the Topology Choice

Choosing a topology forms the structure from which the architecture will evolve. It
determines how systems can grow and change, and has significant impact on the qualities
the final architecture will exhibit (Bass et al. 105-107). The research has shown that
arbitrary topologies appear to place too much overhead on communication in order to
keep the subsystems truly independent, a key requirement for this thesis. Even though
performance was not one of the key requirements for this architecture, other approaches
are still able to meet the requirements without imposing such a high performance cost.

The data flow architecture appears to not be the best choice because the logical
domains are just too different. Trying to design a universal data pipe for all the data
involved in games doesn’t seem like the correct approach. The analysis performed seems
to suggest that the data flow architectural style is just the not the best starting point for
the system level of abstraction.

The layered approach is more structured and could possibly provide better
performance than the other less structured topologies. The layered topology, however,
cannot easily abstract functionality in a way that minimizes the effects of changes in

technology. Part of reasoning behind this thesis is the belief that changing technology

44
has a greater impact on work required and the level of modifiability, than the ability to
swap out the coded game logic. Game technology is moving at an astounding rate, and
gamers often only buy games with the latest technology. This means developers must
constantly upgrade the technology modules or suffer in sales. It would be possible to
place each logical system in its own layer, but doing so essentially emulates the data flow
architecture and all its problems.

Ultimately, the data centered topology was chosen for further analysis because it
showed the greatest mix of flexibility and performance. The other approaches may have
offered some truly desirable characteristics, but had significant inherent disadvantages
that would be difficult to overcome. The data centered approach still allows for sub-
system independence, but allows a direct communication to the game data. At this point
it seems the data-centered layout offers the best chance at designing an architecture that
meets all of the proposed requirements.

By moving forward with the data-centered topology this thesis is placing a higher
priority on providing flexibility in technology usage than on re-using an existing
framework. This prioritization is also matches one of the original goals for this thesis —
supporting COTS-based development. Modern game complexity is just too large for
single development house to create it all. An architecture design that supports easier
integration of COTS technology will likely better serve the industry. It should also be
noted that choosing to start from a data-centered topology does not necessarily restrict the
use of a different topology at a different level of abstraction. For example, it may be

possible to use both a layered and data centered topologies as in Figure 18 below.

45

App or Game Layer

Game Logic I

(from Modules)

Technology Layer

Technology Modules

+Al Thislayer is designed
+ Audio using the data centered
+ Graphics topology

+ Network

+ Physics

+ User Interface

(from Modules)

Figure 18 - Layered and Data-Centered

3.3.3 Choosing a Style of Communication

Once the overall topology of the logical modules has been created, the method of
communication must be designed. We have decided what modules can communicate, but
it has not been decided how that communication will work. Following with the data
centered topology there are two common models available for the communication

between clients and the data.

3.3.3.1 Repository

The first is the repository model where data resides in a passive repository.

Because the data repository is passive, clients are responsible responsible for pulling the

46
data and determining if it has changed. The repository is probably the simplest to
understand because the data store is essential a database answering queries.

The only real downside to this methodology is the increased traffic between a client
and the data store. The client is requesting data for processing even if the data has not

changed.

Figure 19 - Repository

3.3.3.2 Blackboard

The second common model for communication is the blackboard method. In this
model the data repository is active and sends update messages to clients informing them
of the updates to the data (Bass et al. 95). The blackboard methodology is an attempt at

reducing the amount of communication and as a form to keep the clients synchronized.

47

3.3.3.3 Making the Communications Choice

For the games domain the repository model was chosen because it makes the most
sense logically. First, the increased communication between the client and the data store
is less of a concern because both will likely reside on the same computer. Second, a
domain-specific module will need to operate on an object whether it's data has changed
or not. For example, a graphics engine will need to draw a visible object even if it's
position hasn't changed since the last time it was drawn. Lastly, the repository model
also has the benefit of keeping all the data localized in the one area meaning domain-

specific modules don't need to maintain local copies of the data.

3.3.4 Synchronicity

Synchronicity is how the data and control flow through the functional modules.
Because synchronicity is tightly tied to the topology and method of communication we
have already eliminated some possibilities. For example, since we have chosen not to use
the blackboard method of communication asynchronous methods of synchronization may
not be the best choice. Fortunately traditional approaches to game development already
use a method of “ticking” game objects, proving that games can be built using a

synchronous approach.

3.3.4.1 Synchrous at the Object Level

Synchronization at the object level is where all of the object's functionality is

completed before moving on to the next object. In other words an object performs Al,

48
draws itself, etc. then moves on to the next object. If you stick with the paradigm that a

game is just a bunch of game objects then this method makes sense.

3.3.4.2 Batch Synchronization

Batch synchronization is the case where a large group of objects are processesed
completely before moving on to the next group. A game example might be that all
objects perform their Al calculations before they are drawn. This approach starts to make

sense the more complex the specific functionality becomes.

3.3.4.3 Hybrid Synchronization

Current approaches to game development today often use a mix of synchronous
approaches at the object level and component level. “Ticking” an object may result in the
object performing Al, and making sound, while drawing the objects may be done as an
entire batch. This probably a result as games evolved. In early days, games were simple
enough that synchronization at the object level. As technology has grown more complex,
it's often easier to write an entire “engine” to perform things like graphical rendering as a

batch operation (Rollings 453-454).

3.3.4.4 Making the Synchronicity Choice

The choice to move ahead with batch synchronization was made for several
important reasons. First, synchronization at the object level using the data centered
topology with a passive repository does not make a lot of sense. Synchronizing at the
object level defeats the whole purpose of having functional modules operating

independently around a common data store. Having each functional module operate on

49
the relevant objects and then moving to the next functional module does. Second, one of
the main reasons for this research is to deal with the fact the domain-specific processing
is becoming more and more complex. And as games are already beginning to see, it is
easier to handle complex calculations when operating as an “engine” performing a

specific type of functionality all at once.

3.4 The ldea — System of Systems Philosophy

Having performed a great deal of research in both games and software architecture |
have come to really like the system of systems philosophy. While the common concept
of SoS appears to have too many performance issues to make it viable for games, the
underlying idea is sound. The notion that that independent and complete systems are
collaborating and result in an emergent system is very powerful.

Designing a game as a collaboration of independent game subsystems has a great
deal of potential. First, development and test are simplified because dependencies
between sub-systems are eliminated. Second, incorporating the subsystems into a game
can potentially become much, much simpler. Because a logical module is a complete
system, the game is not using the module as a programming library with game specific
function calls. Instead the logical module is configured to behave as a system that will
result in what the desired game needs. So using a game subsystem becomes a matter of
configuring a system, rather than learning and using a domain-specific programming
API. The proposed architecture will attempt to incorporate this simple idea, and possibly

create a new approach to developing games.

4 THE PROPOSED ARCHITECTURE (and a Simple Design)

The proposed architecture takes a step back from looking at games as a system of
game objects, and looks at them more as a data centered System of Systems (SoS). An
architecture where external systems (graphics, Al, etc.) work together toward a common
goal, and the game is formed as the collaboration between those systems working on the
same data set. This chapter will present the architecture and a simple design using the

proposed architecture.

4.1 The Data-Centered System of Systems Topology

The architectural structure is represent below in Figure 19. Domain-specific systems
operate independently on a shared collection of data. The domain-specific systems are
responsible for requesting data to operate on, and update. Another issue to note, but will
be further explained, is the domain-specific systems can store domain-specific data

related to game objects within the common data store.

51

id Data Centered System of Systems /

Graphics User Interface
System System

Data

d]

Netw ork Physics
System System

4] 4]

Artifical Audio System
Intelligence
System

Figure 20 - Data Centered System of Systems

One nice feature of the design shown above is the minimization on dependencies.
Sub-systems no longer depend on each other, they can only work with data and by
working with the same data they are working with each other. Such decoupling should
mean that any sub-system could potentially be replaced or modified without breaking any
of the other components.

The concept presented in Figure 19 is definitely an interesting approach but it has
one fatal flaw that any gamer would immediately notice — speed. Games are expected to
run at very fast speeds, any thing less and the product would be summarily dismissed as a

failure. The above design would suggest that each system processes on the whole of the

52
data. In an era where the data content of a single game can span multiple CDs, this is
obviously not a feasible approach.

This brings us to the second major design decision — selective data processing.
Taking a page from existing game development knowledge, we know the mathematically
complex and time consuming graphics system doesn’t need to process all data objects in
the game, only the objects in the player’s immediate area. In fact just about every sub-
system could benefit from some sort of spatial data organization or scene management.
By moving from a simple data store to a complete data management system we can move

back closer to the performance of existing game architectures (See Figure 20).

id Concept Design /

Graphics User Interface
System System

m Object E .
Network Management Pigsies
System System System
Artifical E Audio System
Intelligence
System

Figure 21- Intelligent Data System Centered System of Systems

53

4.2 Architecture — System Communication

As shown in the analysis phase, system communication can be performed a variety
of different ways. Continuing with the system of systems idea, each domain-specific
component working with the object management component is actually an independent
system (see Figure 21 below). Since a complete system is composed of only two
components and single connection, a direct connection or function calls is acceptable.
Allowing direct communications is actually preferable considering the performance

constraints that exist in the games domain.

Domain Specific Component
Object & Object Management
System

Figure 22 — System Defined as a Domain-specific Component & the Object Component

Allowing direct interface communication between a domain-specific component and
the object management system fortunately doesn’t have much impact in terms of
flexibility and expandability. All domain-specific components require virtually the same
types of interactions with the data. They only require lists of objects to operate on, and
the ability to read and write to those objects. As long as the design supports those kinds

of interactions, the system should remain easily modifiable and expandable.

54

4.3 Architecture — Synchronization

Software architects might immediately notice that this architecture doesn’t support
much in the way of component synchronization. There is no direct communication
between domain-specific systems so there is no immediate way for one domain-specific
component to tell another that it has modified data the other was using. In some
application domains this could be a very serious problem, but keep in mind this
architecture is for games. If for a single tick an object gets drawn even though the Al
system determined that it was killed, a player isn’t likely to even notice let alone care.

Synchronization does exist, but it is performed at the system level rather than the
object level. Unlike architectures where synchronization exists at the object level, it is no
longer enough to “tick” each object in the relative scene and trust that the object will be
drawn, act out its behavior, make sound, etc. Now each system must execute on the data
in turn. A master system must tell a component to operate on all the relevant data and

then signal the next component to do the same. (see Figure 22 below).

55

id Timing J

System (Ticked 1. Tick Ul System
User Interface
System
2. Tick Al System
Artifical
Intelligence
System
3. Tick Object Mgmt System E
Object
Management
System
4. Tick Audio System Audio Systemﬂ
5. Tick Network System E
Netw ork
System
6. Tick Physics System

Physics
System

7. Tick Graphics System

Graphics
System

Figure 23 - Ticking the Game System of Systems

4.4 Architecture — Distributed Synchronization

It is important to note that the architecture assumes each component is operating on

the same computer. This method of synchronization is not plausible if the domain-

56

specific systems resided on different platforms. This does not mean, however, that
distributed games cannot be developed using this architecture. In fact creating a

networked game is a simple expansion of adding a networking component to the local

system.

System 1 System 2

Figure 24 — Example Peer to Peer Networked Game

57

System 1

System 2

Figure 25 -Example Client Server Networked Game

As you can see in Figures 23 & 24 above, the architecture is capable of supporting

the most common networking models. Game developers are free to create their own

method of game synchronization. You’ll notice that the server system in diagram 24

above has not only a network component, but an Al system as well. This was added

because games often use estimation logic in the server to keep clients reasonable

synchronized due to the fact that different clients have different quality of network

connections.

58

4.5 Architectural Features / Architectural Requirements

The goal of the proposed architecture was designed to meet the requirements stated
earlier in Chapter One. While at this stage of the thesis it has not been proven that the
proposed architecture will meet all of the requirements, it does look promising. Actually

validating the architecture will be presented in later chapters.

4.5.1 Support for COTS-Based Development

The proposed architecture seems to support COTS-based development very well.
Functionality is separated and integration is reduced to a simple logical interface. As
long as the COTS component can request objects to process, and is capable of operating

on the object data, game systems should have little difficulty integrating external systems.

4.5.2 Better Knowledge Localization

At this point it isn’t immediately discernable whether the architecture supports better
knowledge localization than other approaches. In one sense it does because the only
cross component communication is that of requesting objects to operate on, thus
removing the need for game developers to learn complex domain-specific APIs. On the
other hand, the object system must support domain-specific data in order for the
components to operate properly. We shall see a little later on that this concern can be

mitigated in the design phase.

4.5.3 System Flexibility / Modifiability

The architecture appears to be flexible. The data-centered topology allows for any

type of system to operate on the data, so seemingly any type of game could potentially be

59
created. It is the developer’s choice of components and their functionality that
determines the type of game being produced. In later chapters this thesis will attempt to

more solidly prove that the proposed architecture supports this requirement.

4.5.4 System Expandability / Maintainability

The figures above represent potential game systems comprised of several
subsystems. While there is nothing wrong with the potential game design, the diagrams
don’t show one of the architecture’s greatest strength — expandability. The figures above
show one artificial intelligence system executing in a game, but there is no reason there
can’t be more. Consider the possibility of having one Al system that determines unit
strategy, while another performs path-finding from one location to another across a map

(see Figure 25 below).

Object &
Object
Management
System

Al System: Al System:
Pathfinding ?22??
L B)

Figure 26- Potential Design using many Al Systems

Al System:
Unit Strategy

The architecture readily supports the ability for game designers to use any type and

number of subsystems they choose. This also promotes COTS development and re-use,

60
since developers can easily re-use some of the more general subsystems, like path-finding

Al, across multiple games.

4.6 A Simple Design

In order to verify the architecture is even feasible, a very simple design will be
created. The design is not intended to be the official starting point for games to begin
development from. It is simply meant to ensure that it is possible to create a game system
using the proposed architecture. Future research will include building better designs

using this architecture, but for this thesis simplicity is the only requirement.

4.6.1 Potential Design: System Communication / Interaction

The architecture defines the topology of any design components, so the fist step is to
determine how the individual systems will collaborate via the object management system
to form a cohesive game system. Using the proposed data-centered approach there are
two kinds of interaction that are of interest. First is the interaction to attach an external
system to the object management system. It should be generic enough that any number
and type of component should be able to attach in a similar fashion. The second
important interaction is the actual reads and writes that take place between the object
system and an external system. The method of interaction must be generic enough that
all subsystems can use it, and flexible enough to support the different kinds of

interactions domain-specific components will need.

61

4.6.2 Potential Design Cont.: Attaching Systems at Compile Time

The ability to attach any type and any number of systems to the object management
system is critical to the architectural requirements for flexibility and expandability.
Because the details of the design are only interesting from an architectural feasibility
standpoint, the simplest design was taken and systems will connect to the object
component via semi-standardized interfaces (see Figures 26 & 27 below).

The approach below is definitely not the best but it does work. Domain-specific
systems require the object management system to implement a specific interface. The
domain-specific system will then communicate with the object system via that interface.
It is system expandable at compile time by having the object system implement a new
domain-specific interface and having the game system of systems attach the new domain-
specific system. This design is not too bad if the interface the object system is required to

implement is kept simple, which it will be.

62

1
«realize»

IDomainSpecificSystem

ConnectObjectSystem(IDomainSpecificObjectSystem)() : void

IDomainSpecificObjectSystem

P

1
«reajize»
1

Figure 27 — Interfaces Required to Connect Domain-specific Component to the Object
Management Component

«interface»
IDomainSpecificSystem

1
1
) 1
|/Create Object Management System!

g=!

ICreate Domain Specific System

»

[

)

1

1

i

:J

1

)

|
ConnectObjectSystem(IDomqinSpecificObjectSyaem)()

:

1

i Connect tjectSystem(IDomainSpecificOti'eo'tSystem)O

1

)

1

1

)

1

1

)

1

Ll

Figure 28 — Example Sequence of Connecting a Domain-specific Component to the
Object Management Component

63

4.6.3 Potential Design Cont.: System Communication

Continuing with the design presented above we need a design that provides a simple
and generic way for the domain-specific systems to interact with the object management
system. Fortunately the interactions required is simply one of getting data objects for
domain-specific processing. 1’ve found that a view/object-list interface provides generic
enough access, and is flexible enough to meet the data access needs of the domain sub-
systems (see Figures 28 & 29 below).

Essentially each domain-specific system needs to request object lists or iterators of
objects to process. The view provides constraints and a context for the object list. For
example, a graphics engine requires lists objects that should be drawn. In order to do this
the graphics engine might receive a view that provides context stating these objects
should take up the whole screen, and then provides the list of visible objects to draw. It
might also receive a small view that states to draw the contained objects in the upper left
hand corner, and provides a list of GUI objects to draw.

An Al system, on the other hand, might only require a single view that allows the Al
system access to all the objects within 100-meter radius of the player, or perhaps a simple
list of computer controlled creatures. So while both the graphics and Al systems require
different lists of objects, the view / object-list approach is flexible enough to meet the

needs of both.

64

'
«realize»

«interface»
IDomainSpecificSystem

+

ConnectObjectSystem(IDomainSpecificObjectSystem) : void

'
«realize»

v

«interface»
IDomainSpecificObjectSystem

+ getDomainViews() : DomainViewlterator

«interface»
IDomainView

+ getDomainSceneObjectManager() : IDomainSceneObjectManager

«interface»
IDomainSceneObjectManager

+ getDomainProcessableObjectlterator() : IDomainProcessableObjectiterator

The Domain Specific System
knows how to process objects this
interface.

«interface»
IDomainProcessableObject

Figure 29 — Interfaces Required for Domain-specific System To Request Objects to

Process

65

Domain Specific
Component

«interface»
IDomainSpecificObjectSystem

«interface»
IDomainView

«interface»
IDomainSceneObjectManager

Object & Object
Management System

H
I
' I
DoainViewlterator:= getbomainVieyws()
>

IDomainSceneObjectManager:=

DomainViewlterator:= getDomainViews()

gelDumainSceneObjectManageL()
>

getDomainSceneObjectManager()

-

eObjectlterator:= getDomainProcesgableObjectiterator()

»

Process the Objects

geétDomainProcessableObjectlterat

A |

qor
>

.

R s - S

Figure 30 — Example Sequence of a Domain-specific System Requesting Objects to

Process

4.6.4 Potential Design Cont.: Observer Pattern to Achieve Localization of

Domain Knowledge

One of the initial architectural requirements is to support domain knowledge

localization. For example, the graphics system contains a great deal of domain data like

mesh and animation structures that is directly related to the game objects in the object

management system. The designer of the object management system and even the game

specific objects should not need to know about those domain-specific details. A game

developer should care that a game object is “attacking”, not necessarily that a specific

graphics engine, with specific class objects is being used to represent the attack visually.

One possible solution to this problem is the observer design pattern (Bass et al). If

objects in the object management system had the generic capability to attach and retrieve

observer objects, domain-specific systems could attach domain-specific data for

processing without the object system needing to understand the data. Figures 30 and 31

66
below show a simple example of how a simple object can be expanded to contain
domain-specific data without the game object creator needing to understand the specific
domain. So for example, the graphics engine could attach an object that contains the 3D
mesh, a skeleton, material information etc. as an attached object, and the game object

need never know it contains graphics specific information.

Domain Generic Game
Specific Data Object Class
Class

Request My Domain Ob

Atta bserver Object

Domain Object &
Specific Ve Object
Component 7 Management

Request Objects Required to Process System

Figure 31-Potential Design using a Domain Observer Object

67

Generic Game Domain Specific
Object Class Data Class

/IRequest Objects to Process

/IReturn list of Game Objects for processing

/IFor each object

Has object been processed before?

//Request Attached Domain Data

1
/IProcess Ddmain Data

Figure 32-Potential Sequence using a Domain Observer Object

5 ARCHITECTURE VALIDATION

The next step in developing the architecture is to verify to a reasonable degree that
the architecture supports the functionality for which it was intended. The first approach
is to apply the architecture and take the reference games past the functional level to the
design level. This should prove to a fair degree of certainty that the architecture still
supports the different game functionality.

The next validation technique used in this thesis is to build a prototype system using
the proposed architecture and confirm that the original goals and requirements have been
met. Obviously building a commercial quality game like Starcraft™ or Unreal
Tournament™ are beyond the scope of this thesis, but building a prototype that offers a
subset of functionality can be created in a reasonable amount of time. The prototype

system should demonstrate each of the original architectural requirements.

5.1 Taking the Reference Games to the Design Level

5.1.1 Applying the Design

The first step in proving the architecture is sound, is proving the architecture can at
least support the functionality it was designed for. Carrying the original game analysis to
the design level should show that the games could have been built using this architecture.
This step will not, however, show if the architecture would work well for the given game
application. The architectural qualities will be left for the prototype to demonstrate.

Before we can carry on to software design, the original analysis artifacts must be
reviewed to see how the proposed architecture affects our understanding of the game.

Going back to the “Play Starcraft” use case diagram in Figure 9, there is one major

69
problem that needs to be solved. While it appears to capture the activities a human player
can perform, it is still incomplete for trying to understand how games really play. The
reason is the timing model for games is very different than the typical software
application.

Most literature proposes use-cases to capture the interactions between actors external
to the system and the system being developed. Games are slightly different, however, in
that the player does not initiate all forms of interactions. For example, if a player starts a
game of Starcraft™ and never enters another command, the game will still play. The
computer Al will process strategies, units will move and behave, and ultimately the game
will continue without the player. By bending the rules slightly and treating the clock as
an actor, the transactional use-case approach should still be sufficient for capturing the

functional requirements in our design.

70

ud Tick)
Tick User
Interface
«include»
(from Tick Ul Component)
<include» Tick Al System
(from Tick Al System)
S __«inclbdf3m Tick Object Component
(Ticked)
ick Game Syste
TR
from Use Case Model) «inclLd.e».

ick Audio System

(from Tick Audio System)

Tick Network
System

«include»

(from Tick Network Component)

Tick Graphics
System

«include»

(from Tick Graphics System)

Figure 33 - Tick Game System Use Case

By looking at the original use-case list in Figure 9 in terms of how they would break
out in terms of the timing use-cases in Figure 32, we can start to understand how the
logical subsystems might implement the game functionality. From here we can begin to

break down the use case and assign portions of it to the various sub-systems. Figure 33

71

below shows a possible use-case breakdown of the “Tick Graphics System” use-case for

,,,,,,,,,,,,,,,,,,,,,,,,,, Update Command oo,
' «include» Button View i
. v

the game Starcraft™.

Draw Main View
Terrain

i
y
—«’Inc\ude
N N =S inrate Main Vi F e e oW BooooooS Update View
UEREETIES) W Update All Views) <«includes | UP4ate Main View «extend» «includes Object
System «ncludé»
|nclude»$ A A A
Draw Main View /}\ \ /:\
Objects \ \
«extgnd»|

; e
Il ! ! Il
S o
«include» > Update Mini Map Vo oo o oo | 3 '
View «extbnd» |

| «extend»
H '

Figure 34 — Tick Graphics System

Selected use cases are then further expanded similarly to what was done during the
analysis phase, only this time the simple design is used. Use cases are driven down to the
system interactions, which are then further driven down into the actual interfaces
involved (see Figures 34 and 35 below). At the end of this we have not only validated
that the analyzed games could be like be built on the proposed architecture, but we have
further defined the interfaces which will be useful for the prototype effort. For the

detailed designs of Starcraft™ and Unreal Tournament™ see appendix A.

System

icked

/ITick Graphics System

T
|
|
|
|
|

/lUpdate View

/IGet View

/IGet Objectsin View

/IDraw the objects

(from Game Analysis View)

"u
"n

Figure 35 — Update View Component Sequence

72

73

eeeeeeeeee

Figure 36 — Update View — Classes and Interfaces

5.1.2 Evaluating the results of applying the design

Before we analyze the results of this exercise it’s important to truly understand the
goals. Moving the selected games down to a design level was performed to verify that
these types of games could be built using this architecture. The resulting artifacts do not
give any insight as to how well the architecture fits the games domain. The artifacts also
are design dependent, so the level of complexity in these representations is more a
reflection of the quality (or lack thereof) of the design, and not the architecture.

Overall it would appear that the architecture can support the two selected games, and
therefore arguably supports many types of games. Using the proposed architecture it was
possible to design the kinds of functionality required for both games. The idea of

individual systems operating on the same data was a bit of a paradigm shift from what is

74
commonly seen in game development literature, but the shift was not so large to make it a

difficult transition.

5.2 Developing a Prototype

In an industry where changing people’s perceptions of software engineering is so
difficult, a paper analysis of the architecture is not likely to change anyone’s development
habits. A tangible prototype that can demonstrate the architectural qualities in a game-
like application is far more likely to have an impact. A prototype will also more

concretely prove the quality attributes this architecture purports to have.

5.2.1 Prototype High Level Design

An effective prototype for this thesis needs to meet certain criteria. First the
prototype must have game-like functionality. It should demonstrate some of the same
kinds of capabilities that exist in games. Second it should demonstrate all of the
architectural requirements stated in Chapter One of this thesis. Lastly, even though
performance was not one of the architectural requirements, the prototype should execute
at speeds reasonable to games. An application that meets such criteria should be able to
answer a great many of the questions likely to arise from people familiar with game

development.

5.2.1.1 Component Selection

The first task in developing the prototype is deciding which systems to model and
build. In order to best demonstrate the architecture’s support of our defined

requirements, most notably flexibility and expandability, only a few domains will be

75
developed. Al and graphics seem the logical choice and should offer ample opportunity

to flex and expand.

Al System Al2System

(from Systems) \ / (from Systems)

Game Object System

/ o \

Graphic 3D System Graphics 2D System

(from Systems) (from Systems)

Figure 37 — Prototype Subsystems
Figure 36 above shows the logical systems that will be built for the prototype. The

prototype should show flexibility in the way the “game” can be assembled using any
combination of these components. It should also demonstrate expandability because
moving from a 2D graphics system to a 3D graphics system is a logical upgrade.

Game Object System - This component acts as the data store that all other

systems will interact with. It is also responsible for
organizing the list of objects the domain systems will

operate on.

76
Al System - This is an extremely trivial intelligence system that will
tell objects to move around.
Al2System - This is another trivial intelligence system that tells objects

to rotate.

Graphics 2D System - A 2D graphics system that renders sprite objects.

Graphics 3D System - A 3D graphics system that renders 3D objects.

5.2.1.2 The Object Data

The next step is to identify the object data that each system uses to operate on.
Figure 37 below shows the object data required for this prototype. This example design
also shows how a single data set can be re-used. For example, when the 2D graphics
system requests an object position as a point2d (structure of two integers) the object can
simple simply return integer typecasts of the x & y aspects of its point3f (structure of 3
floats) location. So in essence when the Al system modifies the position data, it’s

modifying the position data that all the components use.

7l

«interface»
IGraphics2DObject

«interface»
IGraphics3DObject

o
4t
o

gs2dGet2DObjectGraphicsResource() : String
gs2dGet2DObjectLocation() : point2d
gs2dGet2DObjectOrientation() : float

gs3dGet3DObjectGraphicsResource() : String
gs3dGet3DObjectLocation() : point3f
gs3dGet3DObjectOrientation() : point4f

\Z

N\
AN
AN
AN

N
«realize»
N

AN
N\

<7

’
7’
7
’

Z
«;e'allze»

7’
7z
/

GameObject

m
m
m
m

s3DObjectResource: String
s2DObjectResource: String
3fObjectPosition: point3f

4fObjectOrientation: point4f

-
-
-
-
-,

«;eélize»

Y
«interface»
IAIObject

+ aisGetObjectLocation() : point3f

\
~
AN
~
AN

~
«reali‘ze?
Q
«interface»
Al20bject

+ ai2sGetObjectOrientation() : point4f

Figure 38 — Analysis of Object Data Required

While this prototype diagram suggests that the object implements interfaces from the

various systems, that is a design choice not an architectural requirement. Other designs

may use other (possibly better) methods of interacting with the data in the object. Our

purpose here is simply to ensure that we understand what data the attaching systems will

manipulate.

5.2.2 Prototype Detailed Design

The prototype system will follow the
soon see it is not the best possible design,

our uses. Components will request views

design proposed earlier in Chapter 4. We will
but it is simple to understand and adequate for

(aview is really just a list of objects as well as

78
some context information), and then process the objects in that view. So for example
when a graphics component requests a view, the object system would provide a view that
contains the list of likely visible objects.

The design also uses domain-specific observer objects to be attached to the data
objects. This allows the domain-specific system to attach domain data to the object
without the object component requiring any kind of special understanding of the domain
data. As stated before, this design feature was added to provide for knowledge

localization.

5.2.2.1 Component Interfaces

The simple design uses interfaces to facilitate communication between the domain-
specific system and the object management system. Each domain-specific component
will present two kinds of interfaces. One set of interfaces the domain-specific system
will implement and present to the game maker / object management system. At its
simplest, these interfaces are ONLY for connecting the object system to the domain-
specific system, thus keeping the complexities of the domain hidden entirely from the
developer. The other set of interfaces are to allow the domain-specific component to use
the object system. At its simplest, these interfaces are ONLY for requesting views and

access to certain object attributes (see Figure 38 below).

79

Interfaces the Object System can use to communicate with the Graphics3D System
E + IGraphics3DProcessorObject

+ IGraphics3DSystem

Interfaces The Object System Implements |_

4 + IGraphics3DCamera

. + IGraphics3DCapableObject
=] + IGraphics3DObjectSystem

=1 + IGraphics3DProcessableObject
=4 + IGraphics3DSceneManager
d.d + IGraphics3DView

i1 + IGraphics3DViewProcessor

Figure 39 - Example: Graphics3D System Interfaces

In keeping the goal of knowledge localization, the interfaces the domain system
presents to the game maker are trivial. In the example below in Figure 39, the
IGraphics3Dsystem interface provides mechanisms for the game maker to attach an
object system, configure, and “tick” the system. The IGraphics3DprocessorObject and
IGraphics3DViewProcessor are the interfaces to allow the domain-specific system to
attach observers to a data object and view respectively. Such interfaces could also
potentially provide the object and view access to domain-specific functionality, allowing
game developer to play with the nuts and bolts of the domain-specific system. They are
left empty for this demo because one goal of this demo is to demonstrate that game
systems can be assembled without the game developer using any of the domain-specific
functionality. Virtually all domain-specific systems will present a nearly identical set of

interfaces using this design.

80

«interface»
IGraphics3DSystem

+ «pure» gs3dConnectObject3DSystem(IGraphics3DObjectSystem*) : void
+ «pure» gs3dConfigureAndStartGraphics3DSystem(int, int, int, bool) : void
+ «pure» gs3dTickGraphics3DSystem(float) : void

«interface»
IGraphics3DProcessorObject

+ «pure» release3DProcessorObject() : void

«interface»
IGraphics3DViewProcessor

+ «pure» release3DViewProcessor() : void

Figure 40 — Interfaces Into the Graphics 3D System

The interfaces the domain-specific system places on the object system to implement
are equally trivial. The IGraphics3DObjectSystem interface allows the graphics system
to retrieve views. The IGraphics3DView provides access to the objects that should be
considered for drawing, as well as context information like the camera and view
rectangle. Finally the 1Graphics3DProcessableObject interface allows the graphics
system to attach an observer, and allows access to the data the graphics system is
interested in. And just as before, virtually all domain-specific systems can use a virtually

identical set of interfaces using this design.

81

«interface»
IGraphics3DObjectSystem

+ «pure»

gs3dGetGraphicsViews() : IGraphics3DViewIterator*

IGraphics3DCapableObject
«interface»
IGraphics3DProcessableObject

«interface»
IGraphics3DView

+oF o+ o+

«pure»
«pure»
«pure»
«pure»
«pure»
«pure»
«pure»

gs3dGetGraphics3DViewProcessor() : IGraphics3DViewProcessor*
gs3dAssignGraphics3DViewProcessor(IGraphics3DViewProcessor*) : void
gs3dGet3DSceneCamera() : IGraphics3DCamera*

gs3dGetViewRect() : iRect*

gs3dGetSceneManager() : IGraphics3DSceneManager*
gs3dGetSubViews() : IGraphics3DViewlterator*
gs3dGetEnabledinterfaceFlagsForView() : unsigned int

+o+ o+ o+ o+

«pure»
«pure»
«pure»
«pure»
«pure»
«pure»

gs3dGetGraphics3DProcessorObject() : IGraphics3DProcessorObject*
gs3dAssignGraphics3DProcessorObject(IGraphics3DProcessorObject*) : void
gs3dGetGraphic3Dinterfacesimplemented() : unsigned int
gs3dGetGraphics3DResources() : IStringlterator*
gs3dGet3DObjectLocation() : point3f&
gs3dGet3DObjectOrientationAsQuaternion() : point4f&

«interface»
IGraphics3DSceneManager

«interface»
IGraphics3DCamera

+ «pure»
+ «pure»

gs3dGet3DCameralLocation() : point3f&
gs3dGet3DCameralookAt() : point3f&

«pure»

gs3dGetVisibleGraphics3DObjects() : IGraphics3DObjectlterator*

Figure 41 — Interfaces the Object and Object Management System Must Implement in
order for the Graphics 3D Component to Use it.

5.2.2.2 Domain-specific System — Object System Interactions

This simple design requires only two types of system interaction. The first occurs at

system creation time where the domain-specific system is connected to the object system.

The second is the interaction that occurs when you “tick” the domain-specific system.

The combination of “ticking” all the domain systems should result in the game system.

5.2.2.2.1 Connecting Domain System to the Object System

The simple design used in this prototype connects the individual systems via

interfaces. This extremely simple interaction provides the domain-specific component an

interface to use to communicate with the object system. Figure 41 below shows an

example of how the system simply passes a reference to the object component to the

graphics 3D component. Once the domain-specific component has the interface to the

data it can process the data via the “tick” command.

82

CDemoApplication| Root

Root(resourceConfigFile)

«interface» CGraphics3DSystem
IGraphics3DSystem

CGraphics3DSystem(resourceConfigFile)

»
setupResources(resourceConfigFile)
IGraphics3DSystem*:= createGr: phlcs3DSyslem(objeclSyslem£S|ze‘yS|ze,blls,fullScreen) The OGRE graphics engine used
in thisdemo has graphics resource
gs3dConfigureAndStartGraphics3DSystem (xSize,ySize,bits,full Screen) loading capabilities.

gs3d onnectObject3DSystem(objectS‘ys{em) '
L

>

gs3dConfigureAndStartGraphics3DSystem (xSize,ySize,bits,fullScreen)

g

Name Design: Initialize Graphics 3D System (Class-Interface Sequence)
Author: Jeff Plummer

Version: 1.0

Created: 11/8/2004 9:46:13 AM

Updated: 11/8/2004 10:21:34 AM

gs3dConneclObjec(3DSystem(objects:yswm)
L

this architecture. Itis merely a simple implementation of this

The simple design isNOT presented as THE DESIGN TO USE for
architecture.

Figure 42 — Connecting the Object Component to the Graphics3D Component

5.2.2.2.2 “Ticking” the Domain-specific System

“Ticking” the domain-specific system is where the real work is done. The system

tells the domain-specific component to synchronize and process the data in the object

management component. To do this, the domain-specific component will request views

and object lists to process, perform domain-specific functionality, and update the data in

the object management component. The simple prototype design uses interfaces to

perform this and an example can be seen below in Figure 42. See Appendix B for the

complete prototype design.

83

‘mm o ‘ e

Figure 43 — Prototype Sequence: Tick Graphics2D System

5.2.3 Prototype Evaluation

Designing and building the prototype was a much larger task than originally
anticipated, but it was definitely worth the effort. First and foremost it proved the
architecture definitely has potential. The prototype not only demonstrated the original
quality requirements but it uncovered several issues that had not previously been
considered.

In terms of flexibility, the prototype demonstrated the ability to attach and remove
Al components quickly and easily, and resulted in notably different “game” behavior.
For expandability, the “game” could quickly move from 2D to 3D by attaching a new

graphics engine. In terms of domain knowledge localization the game specific objects

84
had no domain knowledge about the components that would use them. The game
developer merely had to implement simple data access interfaces, and domain-specific
data was hidden as an attached observer object. Lastly, the prototype did prove the
architecture supports COTS based development. The domain-specific components were
separate by some very simple interfaces and required no understanding of the inner

workings of other systems.

Figure 44 — Screenshotl from Prototype

300 Wiews Windoe

Figure 45 - Screenshot 2 from Prototype

6 RESULTS

As technology advances and consumers demand the latest features, electronic games
will be required to continue to grow in terms of size and complexity. In order for
development houses to keep costs low, certain realities must be faced. Games can no
longer be coded entirely from scratch. The total cost in terms of time and resources will
soon reach a point making games an infeasible venture. This thesis has proposed an
architectural solution that could help mitigate this problem by moving games to a
common COTS architecture. By allowing developers to “assemble” the game framework
in a flexible manner from technology components, game makers can spend more of their

time focusing on the more game specific aspects.

6.1 Summary

Electronic games are making incredible advances in terms of technology and
complexities. Unfortunately almost all-available literature on the subject of games only
tends to keep pace with the technology advances, leaving developers to devise their own
solutions for managing the complexities. The emerging field of software architecture is
an area of research that has been shown to drastically impact the development of large
complex systems. By using the knowledge found in software architecture and applying it
to the games domain, we can begin to fill the gap that is left by current literature.

In order to design a quality domain-specific architecture, a solid understanding of the
games domain needed to be acquired. Such insight was achieved by analyzing existing
games using standards software engineering practices. The resulting artifacts presented a
quality understanding of the kinds of functionalities and interactions that can occur in

modern day games. Then came the task of finding architectural styles that offer a nice fit

86
for those kinds of interactions. The resulting research also sparked a profound interest in
the system of systems philosophy. Weighing the pros and cons for each style as applied
to the domain resulted in a solid knowledge base for designing an architecture that could
meet the needs of the games domain.

The next phase was to actually use all the acquired knowledge and design an
architecture for the games domain. The proposed architecture was defined as using a
data-centered topology, a direct method invocation for communication, and using a
system “tick” for synchronization. The game system emerges as a result of multiple
independent systems working on the same data set. A simple design was then created
that could be used for the remaining analysis.

After building a simple design it was time to begin analyzing the architecture. The
first method of analysis was to carry the selected games for analysis down to the design
level. This should verify if the architecture is at least capable of support the analyzed
games and by implication capable of supporting many other types of games. In order to
determine how well the architecture would support games the simple design was used in
a prototype system. The prototype was then used to demonstrate the quality attributes of

the architecture.

6.2 Conclusions — Meeting The Architectural Requirements

The proposed architecture definitely shows promise for use in the games domain. It
appears to support the functionality required in a diverse set of electronic games, and it
appears to support them quite well. The architecture allows for a great deal of flexibility

and expandability by supporting any number of a wide variety of domain-specific

87
systems. The architecture also supports the COTS based development approach, and the
easy integration of those components. All in all the architecture seems to offer a great

deal of benefits over the more ad-hoc, tightly coupled designs used today.

6.2.1 Support COTS-Based Development

The proposed architecture promotes COTS-Based development by eliminating
domain-specific component communication. Domain-specific components can only
communicate with the object component, and together form an independent system that
exists completely independent of any other system.

This architectural requirement was verified during the development and assembly of
the prototype. During development, components required only a simple object system to
create a fully demonstrable and testable system. During prototype assembly, the
prototype components can be added and removed at will, demonstrating the complete
independence of the individual components. The domain-specific components also

integrate in a near identical fashion simplifying their integration.

6.2.2 Better Knowledge Localization

The proposed architecture also supports the ability to localize domain knowledge
away from the game developer. By eliminating, or at least greatly reducing, the amount
of domain knowledge a game developer must understand in order to use a game
component properly, we are effectively giving the developer more time to focus on the
game specific aspects of the code.

While such a feature is not immediately inherent in the architecture, it is possible to

add this at the design level. This thesis expanded the architecture to a design that used

88
the observer design pattern to attach domain-specific data to a game object. In the
prototype, the game specific objects have very little domain-specific data. For example,
the only 3D Graphics specific piece of data the object component has is a string that says
what 3D graphics resource to use. All the underlying data that is needed to render that

resource is attached as an observer, and is effectively hidden from the game developer.

6.2.3 Flexibility / Modifiability

Flexibility and modifiability are important to allow developers to re-use components
in a wide variety of games. So by investing money in an expensive piece of domain-
specific technology, the developer has not severely limited the kinds of games he/she can
make. The proposed architecture is flexible enough to allow developers to mix and
match components allowing them to assemble almost any possible game.

This architectural requirement was demonstrated by both the reference games and
the prototype. Both very different reference games were able to be designed using the
proposed architecture, strongly suggesting the architecture can support a wide variety of
games. The prototype also demonstrated flexibility in that attaching different domain-

specific components resulted in a variety of “game-like” applications.

6.2.4 Expandability / Maintainability

Expandability and maintainability are important in keeping development time and
costs down, and should ultimately result in a better quality upgrade. lterative game
incarnations are most often technology upgrades with minor tweaks in game play, and

should not require complete redesigns. The proposed architecture supports this capability

89
by keeping the domain-specific components independent of each other, allowing
technologists to upgrade each system without breaking the other functionality.

The prototype demonstrated this requirement in a few different ways. First, as stated
in meeting COTS-based development, the systems are truly independent of each other
allowing technologists to modify components without breaking others. Second, the
prototype shows expandability by demonstrating technology upgrades by swapping in
entirely different systems. The prototype application was able to make the technology
upgrade from a 2D graphics system to a 3D graphics system by simply attaching a
different component. Lastly expandability is supported by the architecture in much the
same way it supports flexibility - systems can be expanded by simply adding a new

component.

6.2.5 The Performance Concern

Although Performance was not an official requirement of this architecture because
the assumption that most the performance issues reside inside the components, it is
definitely something game developers would be concerned about. Reviewing the
prototype and the simple design, it appears as though this architecture has very little
impact compared to the more monolithic designs presented earlier.

First the architecture allows for direct interface invocation, not requiring any
message-handling overhead (although the architecture does not preclude the use of using
messages as the method of communication). Second, the architecture doesn’t create
much in the way of extra communication. For example, whether an object calls a

graphics library or the graphics systems requests an object to draw, the number of

90
interactions is the same. The exception comes from the fact that there is no direct
communication between the domain-specific components. When components need to
communicate, they must write data to the object management system, and wait for the
response in the next system tick cycle.

The prototype seems to support the notion that performance is not significantly
affected by the architecture. In quick comparisons between the samples that came with
the Ogre™ graphics engine, and the prototype there were no significant performance
differences. Although more detailed profiling would be required to prove how much the

architecture affects performance; that is beyond the scope of this thesis.

6.3 Important Considerations

Developers considering this architecture should read and understand some of the
important considerations that will affect development. These are a few items of wisdom

that were found during the work on this thesis.

6.3.1 Design is Critical

One important fact when using this architecture is that the architecture “supports”
many of the quality attributes. The design plays a large role in determining whether those
quality attributes are part of the system. One such example is the quality of knowledge
localization. This quality wasn’t realized until the design phase where the observer
pattern came into play.

The design can also negate some of the implied quality attributes of the architecture.
For example, the architecture also “supports” easy component integration by limiting the

communication between the domain-specific component and the object management

91
component to simply requesting objects, and read/writing data to those objects. The
prototype design, where the object component is forced to implement interfaces for each
attached component, makes component integration quite tedious. So while it is possible
to design complex game systems with the proposed quality attributes using this

architecture, it left to the designer to ensure those attributes are realized in the system.

6.3.2 Central Object Management System = VERY different

This architecture uses a very different topology than the designs of today. The
current trend seems to be that every system has its own object management system — e.g.
graphics & 3D sound engines each have their own way of organizing objects. This
makes the libraries easy to use, but it duplicates functionality.

One of the goals of this thesis is to promote COTS based development where
specialists can design the best and most optimized components. By centralizing object
management into one area, it means specialists can build the best management
algorithms, whether BSP trees, Oct trees, etc. without being concerned with some of the
domain specialties. It also means people writing the domain-specific components, like
sound, need not concern themselves with complex scene management.

Many game developers may take issue with this approach making arguments that
items like a graphics engine may have highly optimized scene management specialized
for that particular graphics engine, and that a 3" party scene manager would impact
performance. The thing to realize is that this is a design concern, not an architectural
concern. The architecture merely states that the object management component will

provide a domain-specific component with objects to process. There is no restriction

92
saying that a specific graphics component can’t recommend a specific optimized scene
management system to use. By placing it in a central location, however, that same scene
management system is available for the other systems to use.

The architecture also doesn’t state that there is only one scene management system
within the object management component. The object component may have multiple
scene managers that the different systems can use. For example one scene manager may
be designed to provide a list of objects in the player’s view that the graphics engine will
use. Another scene manager could exist that is designed to provide a list of objects

within a specific radius of the player that is used by the sound and Al components.

6.3.3 Think about the Data

When designing to this architecture it is important to think about the data that will
reside in the shared data store. Part of the benefit of this design is that the data you place
there is usable by all domain-specific systems. For example, objects in the prototype had
location and orientation that was used by both the graphics systems and the Al systems.

Another issue related to data is the data types used. Since the domain-specific
components may be written by different companies, and so may be expecting slightly
different data types. The graphics engine may want “double” precision floating point
values for location, while the sound engine may require integers. While this problem is
no different than current games using 3" party libraries, it shows itself in a slightly

different manner.

93

6.4 Future Research

During the course of completing this thesis a great many ideas were left on the
drawing board because they were beyond the scope of this thesis. They are captured here
as ideas for future research, and represent many of the interesting problems that remain to

be answered.

6.4.1 Can this Architecture Work for Massively Multiplayer Online Games

Massively multiplayer games represent the next big advancement in electronic
entertainment. The enormous number of distributed players and objects present some
very interesting problems that were not considered in the design of this architecture. It
will be interesting to see if this architecture can scale across multiple servers, with

thousands of players, all existing in a persistent world.

6.4.2 Design: Domain-specific Component Connection to the Object

Management Component

The simple design used for the prototype, forcing the object management component
to implement interfaces, is very weak. While forcing objects to implement data access
interfaces may be necessary to maintain performance, attaching components and
requesting object lists don’t have the same restrictions. A better design would allow
domain-specific components to easily attach to the object management system, and

request objects to process.

94
6.4.3 Design: No More Interfaces to Access Object Data (If performance

allows)

While function calls to retrieve the data is probably the fastest method to access
object data this architecture can support, there may exist more generic methods that don’t
greatly affect performance. For example, if a simple query language methodology could
allow domain-specific components to access object data without a significant cost in

speed, the ability to add and change components is made significantly easier.

6.4.4 Architecture Inside the Components

While the focus of this thesis was designing the architecture at the inter-component
level, architecting the components themselves is still relatively uncharted territory. It
would be in interesting assignment to research the domains and see if a common
architecture could be created for the specific components. If no such architecture exists,
which is likely due to the diversity of the domains, then work should begin designing

reference architectures for each of the domains.

6.4.5 What is messaging overhead for independent component style

The independent components and system of system architectural styles were rejected
in this thesis because it was thought the messaging overhead were to high for game
systems. It would be an interesting experiment to see how much that overhead would
affect performance. If messaging does not cause a significant drop in performance many

other architectural possibilities are made available.

95

6.4.6 The Architectural Tradeoff Analysis Method

An important piece of work is left undone in this thesis, and that is the
architectural tradeoff analysis method (ATAM). Due to time restrictions not all quality
attributes could be analyzed. It would be an extremely worthwhile endeavor to truly
analyze this architecture more completely, looking at those quality attributes that were

not tested.

Works Cited

“3 Million Lines of Code.” EdGames. Sept. 13 2004.
<http://edweb.sdsu.edu/courses/edtec670/edgames/2002/12/3-million-lines-

of-code.htm>.
“3D Engines Database: Unreal Engine 3.” DevMaster.net. Sept 14. 2004.

<http://www.devmaster.net/engines/engine details.php?id=25>.

“A $30 Billion Dollar Industry.” Aug. 2003.

< http://www.xboxcity.com/console/NewsDetail.asp?NewsID=1422&fc=0 >.

“A Brief History of the FPS.” Aug. 2003.

< http://www.3dactionplanet.com/features/editorials/fpshistory1/>.

Adolph, Steve. “Reuse and Staying in Business.” Gamasutra. 12 Dec. 1999.
Sept 12. 2004.

<http://www.gamasutra.com/features/19991213/adolph 02.htm>.

Alves, Carina. Jodo Bosco Pinto Filho and Jaelson Castro. “Analysing the Tradeoffs
Among Requirements, Architectures and COTS Components.” Centro de
Informatica, Universidade Federal de Pernambuco Recife, Pernambuco. Sept.

5 2004. <http://www.cs.ucl.ac.uk/staff/C.Alves/WERQ01 COTS.pdf>.

Bass, Len. Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley, 1998.
Busto, Roberto Del. “Games and Simulations.” Aug. 2003.

< http://coe.sdsu.edu/eet/Articles/gamessims/index.htm >.

Calvert, David. “Software Architectural Styles.” 3 June 1996. Aug. 16 2004.

<http://hebb.cis.uoquelph.ca/~dave/27320/new/architec.html>.

“Definition: System of Systems.” The Free Dictionary.com. Oct. 7 2004.

<http://encyclopedia.thefreedictionary.com/System%200f%20systems>.

“Domain-specific Software Architectures.” Aug. 2003.

< http://sunset.usc.edu/classes/cs578 2003/13-Domain-

Specific%20Software%20Architectures%20(DSSA).pdf >.

Duffy, R. “Software Architecture.” Sept. 12 2004.

<http://members.aol.com/rduffy4187/report.ntml>.

E. Berard. Essays in Object-Oriented Software Engineering. Prentice Hall, 1992.
Fristrom, Jamie. “Manager in a Strange Land: Most Projects Suck.” Gamasutra.
17 Oct. 2003. Sept. 12 2004.

<http://www.gamasutra.com/features/20031017/fristrom 01.shtml>.

“History of Arcade Games.” Aug. 2003.

< http://www.hut.fi/~eye/videogames/arcade.html>.

“How to Make a COTS Project Fail.” Aug. 2003.

< http://www.versaterm.com/topic list/topicl16.htm>.

Nilson, Roslyn; Kogut, Paul; & Jackelen, George. Component Provider’s and Tool
Developer’s Handbook Central Archive for Reusable Defense Software
(CARDS). STARS Informal Technical Report STARS-VC-B017/001/00.
Unisys Corporation, March 1994.

Rollings, Andrew and Dave Morris. Game Architecture and Design. The Coriolis
Group, 2000.

Sloan, Jason and William Mull. “Doom 3 FAQ.” Aug. 2003.

97

< http://www.newdoom.com/newdoomfaq.php#5>.

“Unreal Tournament History”. Oct. 20 2004.

<http://www.unrealtournament.com/general/history.php>.

98

APPENDIX A -
GAME ANALYSES

100

TABLE OF CONTENTS — APPENDIX A

SECTION NAME Page
GAIME ANBIYSIS ...ttt bbbttt bbb 107
Game Analysis - Use Case and DYNAmIC VIBWcccoviviirienenienienesee e 107
PIAYEE .ttt e e aenreas 107

SYSTBIM et 107

SyStEM (TICKEA).....viiiiiiiiieee e 108

IMIOTUIES ...ttt b et 109
GAME DAt ... 110

LC -V Lo oo oSSR 110
Technology MOGUIES ..o e 110

Al e 110

AUGIO .t 110

L] o] 1 ot USSR 110

INETWOTK ..o bbbt 110

PRI SICS ettt neenreas 110

USEI INEEITACE ... 110

SEAMCTATT ... 111

USE CBSES ...tttk 111
SHANTUP vttt 112

Select MUlti-Player Gamecccveveiieieee e 112

Select Single Player Game ..o 112

SECTION NAME Page
OPLIONS IMBNU ...ttt e e e te e esreesnaeneenneas 114
ENG MISSTON ...ttt 114
GO HEIP e e 115
Get MisSion ODJECLIVEccvceceecece e 115
L0AA GAME ...t 115
MOITY OPLIONS ...t 115
RETUIN TO GaME ... 115
SAVE GAIMEot 116
Play SEarcraftccooveii e 117
ATEACK UNIT .o 117
Change Map Display Ar€acoceeiieiinieiiesese e 123
GathEr RESOUICES.......veveiieieieiceste et 126
GIVE UNIE AN OFUET ... 132
MOVE 10 LOCAIION. ..ottt 137
Research TeChNOIOgYc.cooveiiiiiiieece s 142
SEIECE ODJECL.....ei e e 145
Building construct UNitcccveieiiiiice e 150
Give BUilding an OFderccooiiiiiiiiiiieeee e 150
HOIA POSIEION ...t 150
Manipulate ObJeCt RESOUICES........cccveveeieiiere e 151
Manipulate Player RESOUICESccccoeiiriiriinieieie e 151

Modify Doable Commandsccooveiieiieniie e 151

SECTION NAME Page
Patrol LOCALIONoveveiiieiieiee e 151
SEOP MOVEMENL......c.iiiiiiiieieee e 151
Unit Construct BUIAING........ccooviiiiiiiiieee s 151

Design: Tick Starcraft SYStem.........cccoveiiiieiiie e 153

Tick Starcraft Game SYSteM.......ccovvveeiiveie e 154
THCK AL SYSTEM....oiiiii e 155
TICK Al SYSTEM ... 155
Navigate Map - Pathfindingccccooeiveiieiee e 157
ATACK. ... 158
Calculate Al STAe........cooiiiiee e 158
Calculate Next MOVEMENt...........cooviiiiiieceecee e 159
Calculate Unit aCtIONcoviiiieiiieee e 159
Execute Map WatChercccvoveiieieee e 159
TICK AUIO SYSTEM ..ottt 161
TICK AUTIO SYSTEIM ... 161
TICK GraphiCs SYSEMccuvcviiiiiiee e 164
1GraphicSODJECISYSIEMcvveiecc e 164
Update VIEW ODJECTooiiieieieieereeee e 164
Tick Graphics SYSeM.......ccoiiiiiicie e 166
UPALE VIBW ...ttt 166
Update Main VIBW........cuiiiiiieieiiescsiesieseeee et 171

Draw Main VIeW ODJECESccviiriiiieiiericee e 171

SECTION NAME Page
Draw Main VIEW TEITaINccccvrveiiiiiiieeneeese s 171

Update All VIBWSocooiiiiiiiieiee e 171

Update Command BUttON VIEWcccccevirieiinninieseee e 171

Update Mini Map VIBWccoouviiiiiee s 172

Update Protrait VIBWcocveieiieieeie e 172

Update StAtUS VIBWc.ooiiieieieiiesie e 172

Tick Network COmPONENT.........cccveiiiiiieesee s 173
Broadcast local 0bjects TO SErVer........cccccvveveiieieerie e 173

TiCK NetWOrk SYSTEMociviiieciee e 173

Update 0bjects FROM SEIVETcccoviiiiiiieienese e 175

Tick Object COMPONENTc..oiiiiiiii e e 176
Tick Object System / Game LOGQICcovevveiieiieeiie e e 176

Update Commander ODJECtcccoveeiiieiieie e 178

Update Controlled ODJECt.........cccooeiiriiiiiiieieee e 178

TICK UL COMPONENT.......oiiiiiiiiiiitieie et 179
Process Keyboardcccoevviiiiieieece e 179
Process MOUSEccciiiiiiniiii s 179

TICK USEr INEITACE ..o 179

UNreal TOUMNAMENTc.oviieiiieitcieie et 182
USE CASES ...ttt 182
Play Unreal TOUMMamMENT..........cooiiiiiiieiesi e 183

COolleCt AMIMO ... 183

SECTION NAME Page
Collect HEalth ..o 183
COlIECT ITEBM . 183
COollECt WEAPON ...ttt 185
UMD e 185
MOVE ..o 185
ROTALE ... 187
SROOL......ee s 187

D= o A I T SRS 188
SYStemM (TICKEA) ... veiieieee e 188
Tick PhySiCS COMPONENT......cooiiiiiiiiiiierieeieee e 189
TICK Al SYSTEM ... 189
Tick Audio COMPONENLc..ecieiieeieic e 189
Tick Graphics 3D COMPONENT........cccceiierieiiereee e 189
NOTE . 189
Tick Network COmMPONENTcoveiiiiieiieecee e 190
Tick Unreal Tournament Game SyStemcccevvvieevvereiieseeinennenn 190

TICK Al SYSIEM. .ot 191
Tick Unreal Tournament Game SYStemcccoceveverenerinnieiieinennes 191
SysStem (TICKEA).....oiiiiieece s 191
NOTE ..o 191
TICK Al SYSTEM ...t 191

THCK PIAYET . 193

SECTION NAME Page
TICK PrOJECHIE.cieee e 193
Tick AUAIO COMPONENT........oiiiiiiiieie et 194
Tick Audio COMPONENTcviiiiiiieiieie e 194
Tick Graphics 3D COMPONENL..........cccveieeiiiieie e 196
Tick Graphics 3D COMPONENT........cccceiverieiieieere e 196
Update All Graphical VIBWS...........cccooiiiiiiiiiee e 198
Update Character Status OVerlaycccocevevieienienieniee e 198
Update GUI OVETIAYS.......c.coveieeie e 198
Update Main Play VIEWcccvviiiiieieiiece e 198
Update Team Score OVErlay..........coovviriniiieieieic e 200
Update Weapon/Ammo OVerlay..........ccccvevenienennnninnnnnn 200

Tick Network Componentccocveveveerecie e, 201
Broadcast Local Objects TO Servercocveveveivesvarnnnnnns 201

Tick Network COMPONENL.........coovvieiiiirieneseseseeeeeeees 201

Update Local Objects FROM Server.........ccocvevevveiiveennnnnn, 203

Tick Object COMPONENL......cccccveiieieeieceere e, 204

Tick Object COMPONENL.......cccviiereee e, 204

Tick PhysicS COMPONENT........ccciviiiiiiieieeesie e, 207
Calculate Collision Reaction.........c.cccevereriinencinnicneens 207

DeteCt COIlISIONS........coveiiiieiceree e 207

Tick PhysicsS COMPONENtccvviiiiiiienieseneseeeeeeee e 207

106
SECTION NAME Page

107

A-1.1 Game Analysis

A -1.1.1 Game Analysis - Use Case and Dynamic View

This diagram shows the high level list of artifacts uncovered during the analysis phase of
this thesis.

Name: Analysis

Author: Jeff Plummer
Version: 1.0

Created: 11/1/2004 2:37:50 PM
Updated: 11/9/2004 3:01:36 PM

Modules
+ Game Data
+ Game Logic
Player §+Technology Modules
System Starcraft
D + Use Cases

Unreal Tournament

System (Ticked) D + Use Cases

Figure 46 : Analysis

A-11111.1.1.1.1Player

Type: public Actor
Package: Game Analysis - Use Case and Dynamic View

This actor represents the human player who is playing the game.

A-1111.1.1.1.1.2System
Type: public Object

108

Package: Game Analysis - Use Case and Dynamic View

The system represents "application” portion of the code that will create and tick the
components.

A-1.1.1.1.1.1.1.1.3 System (Ticked)

Type: public Object
Package: Game Analysis - Use Case and Dynamic View

This actor represents the System but implies the actions occur on a regular or clocked
basis.

109

A-1.1.1.2 Modules

This package represents the logical modules involved in game development.

This diagram shows all the logical modules involved in game development.

Name: Logical Modules
Author: Jeff Plummer
Version: 1.0

Created: 9/26/2004 2:07:25 PM
Updated: 11/1/2004 3:24:35 PM

Graphics Al

(from Technology Modules) (from Technology Modules)
User Interface Audio

(from Technology Modules) (from Technology Modules)
Netw ork Game Logic

(from Technology Modules)

Game Data

Figure 47 : Logical Modules

110

A-111.21 Game Data

This package represents all the game specific data involved in the game.

A-11122 Game Logic

This logical module represents the game specific functionality for the system. Game
rules, behavior, etc.

A-1.1.1.2.3 Technology Modules

These packages are the domain-specific logical modules involved in game development.

A-111231AlI

This logical module represents the artificial intelligence or behavioral functionality
required in the game.

A-1.1.1.23.2 Audio

This logical module represents the Audio functionality required in the game.

A -1.1.1.2.3.3 Graphics

This logical module represents the graphical functionality required in the game.

A-1.1.1.2.3.4 Network

This logical module represents the network functionality required in the game.

A -1.1.1.2.3.5 Physics

This logical module represents the physics simulation functionality required in the game.

A-1.1.1.2.3.6 User Interface

This logical module represents the user interface functionality required in the game.

A -1.1.1.3 Starcraft

This package represents the analysis and design work performed for the game

Starcraft(tm).

A-111.31 Use Cases

This diagram shows a high level view of the use cases and actors involved in

Starcraft(tm).

Name Use Case Model
Author: Jeff Plummer

Version: 1.0

Created: 12/26/2003 5:59:05 PM
Updated: ~ 11/4/2004 4:35:47 PM

System

(from Game Analysis - Us{ \Case and Dynamic View)

System
(Ticked!

(from Game Analysis - Use Case and Dynamic View)

Player

(from Game Analysis - Use Case and Dynamic View)

Options Menu

+End Mission
+ Get Help

+ Get Mission Objective
+Load Game

00000

+ Modify Options
P + Retum To Game
P + save Game

Play Starcraft

P=Y + Attack Unit

IS - Change Map Display Area
P + Gather Resources

P= - Give unit an order

P + Move to Location

+ Research Technology

+ Select Object

+ Building construct Unit

+ Give Building an order

+ Hold Position

+ Manipulate Object Resources
P + Manipulate Player Resources
P - Modify Doable Commands
P + Patrol Location

P= - Stop Movement

P™ + Unit Construct Building

Startup

P=Y + Select Multi-Player Game
P2 + select Single Player Game

Design: Tick Starcraft System

+ Tick Al System
+ Tick Audio System

+ Tick Graphics System

+ Tick Network Component

+ Tick Object Component
+Tick Ul Component

+ Tick Starcraft Game System

Figure 48 : Use Case Model

111

112

A-11.11111.1.1 Startup

This diagram represents the initial options presented to the player when the launch the
Starcraft(tm) application.

Name: Startup
Author: Jeff Plummer
Version: 1.0

Created: 2/12/2001 12:00:00 AM
Updated: 11/9/2004 2:19:05 PM

Select Single
Player Game

/

Player

(from Game Analysis - Use Case and Dynamic

Select Multi-Player
Game

Figure 49 : Startup

A-1.1.1.3.1.1.1.1.1 Select Multi-Player Game

Type: public UseCase
Package: Startup

Selecting multiplayer game enables the player to compete against other human players
via a network connection or over the internet.

A-1.1.1.3.1.1.1.1.2 Select Single Player Game

Type: public UseCase
Package: Startup

113

Selecting a single player game prepares a game to be played on a single machine against
computer controlled opponents.

114

A -1.1.1.3.1.2 Options Menu

This diagram shows the options available to the player to choose from in the options
menu

Name: Options Menu
Author: Jeff Plummer
Version: 1.0

Created: 8/23/2003 12:21:44 AM
Updated: 11/9/2004 2:19:13 PM

Save Game

Load Game

Modify Options

Player

(from Game Analysis - Use Case and Dynamic View)

Get Mission

Objective

Return To Game

Figure 50 : Options Menu

A-1.1.1.3.1.2.1.1.1 End Mission

115

Type: public UseCase
Package: Options Menu

This use case represents the action to allow the player to end the current mission and quit
back to the main startup screen.

A-1.1.13.1.2.1.1.2 Get Help

Type: public UseCase
Package: Options Menu

Enter the help system.

A-1.1.1.3.1.2.1.1.3 Get Mission Objective

Type: public UseCase
Package: Options Menu

This use case represents the action of allowing the player to re-request the list of
objectives for the current game level.

A-11.1.31.2.1.1.4Load Game

Type: public UseCase
Package: Options Menu

This use case reoresents the functionality of loading a game state from a file, allowing the
player to continue a game where they last saved.

A-1.1.1.3.1.2.1.1.5 Modify Options

Type: public UseCase
Package: Options Menu

A-1.1.1.3.1.2.1.1.6 Return To Game

Type: public UseCase
Package: Options Menu

Allows the player to exit the options menu and return to playing the current game.

116

A-1.1.1.3.1.2.1.1.7 Save Game

Type: public UseCase
Package: Options Menu

This use case represents the action of saving the current game state to a file.

117

A -1.1.1.3.1.3 Play Starcraft

This diagram represents the actions the player can perform while playing the game.

ame: Play Starcraft
h

uthor: Jeft Plummer
e Change Map
reated: 8/22/2003 11:30:19 PM Dieplay Area
pdated: 11/412004 4:35:06 PM

Select Object

co<zz

S

Player

(fom Game Analysis - Use Case and Dynamif Vie

Figure 51 : Play Starcraft

A-1.1.1.3.1.3.1.1.1 Attack Unit

Type: public UseCase
Package: Play Starcraft

This use case represents the action of a player telling one of his/her units to attack another
unit.

Scenarios
Basic {Basic Path}.

Analysis: Attack Unit (Logical Modules Involved) Messages

1. Player clicks the attack button
2. Player clicks an enemy unit
3. Unit enters attack state, and will move and attack selected enemy unit.

Enemy enters zone of control {Alternate}.

Description:

118

Without requiring the player to do anything, when an enemy unit enters a unit's
zone of control, the unit will attack.

vvvvv

wwwwwwwwwwwwwwwwwwwwww

nnn

o Game Analysis - Use Cast

sssssssssssssss

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Atthe analysis level, these i

nteractions are not me:
design. They merely show which logical modules are involved,
not how the gets i

ant to show

This diagram showg what logical modules are required to perform the "Attack Unit"

use-case.

Figure 52 : Analysis: Attack Unit (Logical Modules Involved)

Messag | From
e Object

To
Object

Notes

|
D
1

Player

Analysi
s: Give
unit an
order by
clicking
order
button
(Sub-
Systems

Call the "Analysis: Give
unit an order" use case

Involve
d)
Analysi | Game Represents the beginning
s: Give | Logic of the details specific to
unit an this "Give Unit an Order"
order by interaction.
clicking
order
button
(Sub-
Systems
Involve
d)
//Set Game Game Game logic tells the
Object | Logic Data object to prepare for an
state - input selecting the attack
"Pre- target for that unit.
Attack,
awaitin
g target
definiti
on"
Player | Analysi | Call the "Analysis: Select
s: Select | Object™ use case
Object
(Sub-
Systems
Involve
d)
//Set Game Game Tell the object waiting for
object | Logic Data an attack target, to target
state - the unit that has just been
"Attack selected.
target"
Analysi | Game Represents the beginning
s: Select | Logic of the details specific to
Object this "Select Object"
(Sub- interaction.
Systems
Involve
d)
/[Calcul | Game Al The Al logical module
ate how | Logic will determine how the
to object should behave - in
behave this case how the object

119

will attack.

8 | //Get Al Game The Al functionality
object Data requires object data to
data process like current

position, target position,
attack range, etc.

9 | /lGet Al Game The Al functionality
navigati Data requires map navigation
on map data to process. The

navigation map is data
that says how an object
can move from one
location to another.

1 | //Calcul | Al Al Using the object data and

0 |ate map information the Al
Behavi logical module will
or determine what the object

should do. It will decide
how the object should
move (if required) and
any attack specific
behavior.

1 | //Write | Al Game Once the Al functionality

1 | object's Data has decided what the
behavio object will do, the data /

r

state information must be
saved inside the object.

120

121

This diagram shows the sequence of events at the component level that occur to
complete the "Attack Unit" use case.

Figure 53 : Design: Attack Unit (Component Sequence)

Design: Attack Unit (Component Sequence) Messages

Messag | From To Notes

I |e Object | Object

D

1 Player | Design: | Call the "Give Unit an

Give Order" use case.
unit an

order

(Compo

nent

Sequenc

€)

2 Design: | Object | Represents the beginning
Give & of the order specific
unitan | Object | interaction details.
order Manage
(Compo | ment
nent System
Sequenc | (Data)
€)

3 | //Set Object | Object | In this design the game
object | & & logic resides within the
stateto | Object | Object | game object itself, so the
"pre- Manage | Manage | object readies itself for

attack | ment ment receiving the attack
awaitin | System | System | target.
g target | (Data) (Data)
definiti
on"
Player | Design: | Call the "Select Object”
Select use case.
Object
(Compo
nent
Sequenc
€)
Design: | Object | Represents the beginning
Select & of the details specific to
Object | Object | this "Select Object"
(Compo | Manage | interaction.
nent ment
Sequenc | System
e) (Data)
/IAssig | Object | Object | In this design the game
ntarget | & & logic resides within the
to Object | Object | game object itself, the
selected | Manage | Manage | object sets the attack
object | ment ment target to the object that
System | System | has just been selected.
(Data) (Data)
/[Tick | System | Artificia | In this design the Al
Al (Ticked |1 resides in its own
System |) Intellige | component and will be
nce "ticked" to tell the Al
system to operate on a list
of objects.
/IGet Al | Artificia | Object | In this design the Al
Objects | | & system will request list(s)
to Intellige | Object | of objects to process.
Process | nce Manage | The Object management
ment component is responsible
System | for providing the domain-
(Data) | specific component list(s)
of relavant objects (i.e.
not ALL the objects).
//Get Artificia | Object | The Al system will
navigati | | & require some form of
onmap | Intellige | Object | traversability map of the
nce Manage | object system.

122

ment
System
(Data)
1 | //Calcul | Artificia | Artificia | Using the object data and
0 | ate I I map information the Al
attack Intellige | Intellige | component will
route nce nce determine what the object
for should do. It will decide
object how the object should
in move (if required) and
attack any attack specific
state behavior.
1 | //Updat | Artificia | Object | Update the object with
1 | eobject | I & data specific to the attack
data Intellige | Object | behavior the Al
nce Manage | component decided.
ment
System
(Data)

A-1.1.1.3.1.3.1.1.2 Change Map Display Area

public UseCase
Play Starcraft

Type:
Package:

Scroll the main screen showing a different area of the map.

Scenarios

Mouse at edge of display {Basic Path}.

Description:
When the mouse reaches the edge of the visible display, the display will scroll
the map smoothly in the direction of that edge.

1. Mouse moves to edge of screen.
2. Move viewable area.
3. Update minimap rectangle.

Click Location on Mini-Map {Alternate}.
Description:
When a user clicks a location on the mini-map, that area becomes the new view

area.

123

124

(from Technolpgy Modules) (rom Mbdules) (trom Mbdules) (trom Technology Modules)
JIPlayer moves mouse !

IMersage mouse isat edge of screen

/lupdate Graphics Views

(from Game Analysis - Use Case and Dynarric View)

9/29/2004 4:15:41 PM funct

Analysis: Change Map Display Area by Moving Mouse to Edge of Screen(Logical Modules Invol are not meant
Jeft Plummer ich logical

1.0 o rily how the
11/4/2004 4:31:25 PM

This diagram shows what logical modules are required to perform the "Change Map
Display Area™ use-case. This is only representative for the sequence where the
mouse is moved to the edge of the viewable screen.

Figure 54 : Analysis: Change Map Display Area by Moving Mouse to Edge of
Screen(Logical Modules Involved)

Analysis: Change Map Display Area by Moving Mouse to Edge of Screen(Logical
Modules Involved) Messages

Messag | From To Notes

I |e Object | Object

D

1 | //Player | Player | User The player moves the
moves Interfac | mouse to the edge of the
mouse e main view screen.

2 | //Messa | User Game The game logic needs to
ge Interfac | Logic know that the mouse has
mouse | e moved to the edge of the
is at screen.
edge of
screen

3 | //Updat | Game Game In order to change the
e Logic Data map display area we just
Camera change where the
Position "camera" is located.

4 | //[Updat | Game Graphic | The graphics need to be
e Logic S redrawn using the new
Graphic "camera" position.

s Views

HTick Graphics System

This diagram shows the‘sequence of events at the component level that occur to
complete the "Change Map Display Area" use case.

Figure 55 : Design: Change Map Display Area (Component Sequence)

Design: Change Map Display Area (Component Sequence) Messages

Messag | From To Notes

I |e Object | Object

D

1 |//User | Player | User
moves Interfac
mouse e
(to the
edge of
the
screen)

2 | /l[Tick | System | User Ticking the Ul system
Ul (Ticked | Interfac | tells the Ul Component to
System |) e grab the status of all Ul

devices, or atleast update
variables based on the Ul
events that occurred.

3 | //Updat | User Object | Tell any Ul event

eview/ | Interfac | & listening objects in the
object |e Object | game object component
listenin Manage | about the mouse

gto ment movement.

125

mouse System
click (Data)

4 | /[Tick System | Object | In this simple design the
Object | (Ticked | & game logic resides in the
System |) Object | object system, so ticking

Manage | the object component is
ment the same as processing all
System | game logic.

(Data)

5 | //Updat | Object | Object | When the game object
e & & listening to mouse actions
camera | Object | Object | gets ticked, it tells the
object | Manage | Manage | camera to change

ment ment position.
System | System
(Data) (Data)

6 | /[Tick System | Graphic | In this design the
Graphic | (Ticked |s3D graphics resides in its
S) System | own component and will
System be "ticked" to tell the

graphics system to
operate on a list of
objects.

7 | lIGet Graphic | Object | Get the objects that are
Views |s3D & visible for drawing.
and System | Object
Visible Manage
Objects ment

System
(Data)

8 | /[Draw | Graphic | Graphic | Draw the returned objects
views s3D s3D to the screen based on the
using System | System | view context.
updated
data
(the
camera
was
updated
)

A-1.1.1.3.1.3.1.1.3 Gather Resources
public UseCase

Type:

126

127

Package: Play Starcraft

Certain units can gather resources from the map. They interact with a resource object,
and then carry some resources back to their base where it is added to the player's
resources.

Scenarios
Basic Path {Basic Path}.
1. Unit receives gather resources command message (includes target).
2. Unit Moves to resource location.
3. Unit intereacts with resource for a period of time.
4. Unit moves to base.
5. Unit interacts with base, depositing the collected resources.

vvvvvv

cccccccccccccccccc

This diagram shows what logical modules are required to perform the "Gather

Resources" use-case.
Figure 56 : Analysis: Gather Resources (Logical Modules Involved)

Analysis: Gather Resources (Logical Modules Involved) Messages

Messag | From To Notes
I |e Object | Object
D
1 Player | Analysi | Call the "Analysis: Give

s: Give | unit an order" use case
unit an

order by

clicking
order
button
(Sub-
Systems
Involve
d)
Analysi | Game Represents the beginning
s: Give | Logic of the details specific to
unit an this "Give Unit an Order"
order by interaction.
clicking
order
button
(Sub-
Systems
Involve
d)
//Set Game Game Game logic tells the
object | Logic Data object to prepare for an
state to input selecting the
"Gather resource target for that
- unit to gather from.
Awaitin
g
resourc
e
target"
Player | Analysi | Call the "Analysis: Select
s: Select | Object” use case
Object
(Sub-
Systems
Involve
d)
Analysi | Game Represents the beginning
s: Select | Logic of the details specific to
Object this "Select Object"
(Sub- interaction.
Systems
Involve
d)
Set Game Game Tell the object waiting for
selected | Logic Data a gather target, to target
object the resource that has just

128

state - been selected.
"gather

from

target”

7 | /[Calcul | Game Al The Al logical module
ate unit | Logic will determine how the
behavio object should behave - in
r this case how the object

will behave in order to
gather resources.

8 | //Get Al Game The Al functionality
object Data requires object data to
data process like current

position, target resource
position, etc.

9 | /lGet Al Game The Al functionality
navigati Data requires map navigation
on map data to process. The

navigation map is data
that says how an object
can move from one
location to another.

1 | //Calcul | Al Al Using the object data and

0 |ate map information the Al
behavio logical module will
r determine what the object

should do. It will decide
how the object should
move to the resource(if
required) etc.

1 | //Write | Al Game Once the Al functionality

1 | object Data has decided what the
data object will do, the data /
(move state information must be
ment, saved inside the object.

etc).

129

|||||

Object & Object
anagement System
(Data)

Artificial Intelligence

ITick Al System

This diagram shows the se
complete the "Gather Resources™ use case.

quence of events at the component level that occur to

Figure 57 : Design: Gather Resources (Component Sequence)

Design: Gather Resources (Component Sequence) Messages

Messag | From To Notes

Il |e Object | Object

D

1 Player | Design: | Call the "Give Unit an

Give Order" use case.
unit an

order

(Compo

nent

Sequenc

€)

2 Design: | Object | Represents the beginning
Give & of the order specific
unitan | Object | interaction details.
order Manage
(Compo | ment
nent System
Sequenc | (Data)

e)
3 | //Set Object | Object | In this design the game

130

object | & & logic resides within the
stateto | Object | Object | game object itself, so the
"Gather | Manage | Manage | object readies itself for
- ment ment receiving the resource
awaitin | System | System | target.
g (Data) (Data)
reesour
ce
target"
Player | Design: | Call the "Select Object"
Select use case.
Object
(Compo
nent
Sequenc
€)
Design: | Object | Represents the beginning
Select & of the details specific to
Object | Object | this "Select Object"
(Compo | Manage | interaction.
nent ment
Sequenc | System
e) (Data)
//Set Object | Object | In this design the game
object's | & & logic resides within the
resourc | Object | Object | game object itself, the
e target | Manage | Manage | object sets the resource
ment ment target to the object that
System | System | has just been selected.
(Data) (Data)
/[Tick System | Artificia | In this design the Al
Al (Ticked |1 resides in its own
System |) Intellige | component and will be
nce "ticked" to tell the Al
system to operate on a list
of objects.
//Get Artificia | Object | In this design the Al
objects | | & system will request list(s)
to Intellige | Object | of objects to process.
process | nce Manage | The Object management
ment component is responsible
System | for providing the domain-
(Data) | specific component list(s)

of relavant objects (i.e.
not ALL the objects).

131

9 | /IGet Artificia | Object | The Al system will
navigati | | & require some form of
onmap | Intellige | Object | traversability map of the

nce Manage | object system. The
ment traversability map is
System | important so the object
(Data) | can travel to the resource
target.

1 | Process | Artificia | Artificia | Using the object data and

0 | objects |1 I map information the Al

Intellige | Intellige | component will

nce nce determine what the object
should do. It will decide
how the object should
move (if required) and
any gather resource
specific behavior.

1 | //Write | Artificia | Object | Update the object with

1 | object || & data specific to the gather
data Intellige | Object | behavior the Al

nce Manage | component decided.
ment
System
(Data)

A-1.1.1.3.1.3.1.1.4 Give unit an order

public UseCase
Play Starcraft

Type:
Package:

Orders can vary from move, attack, patrol, etc.

Scenarios

Order With Target. {Basic Path}.

DESCRIPTION:
The most common orders are move, attack, and gather resources order. After
giving the order, the target of the order must be selected. E.g. Giving a unit a

132

move command requires the user to select the location to where the unit should

move.

1. User clicks the order proper order command from the command window.

2. User selects the target of the order

Fast order command {Alternate}.

133

DESCRIPTION:
Right clicking a location represents the fast order command.

1. User right clicks a location on the main map display.

2. Unit evaluates the order command. E.g. Right clicking an empty location will
mean execute the MOVE command, right clicking an enemy unit will imply the
ATTACK command.

Order with invalid target {Exceptional}.
DESCRIPTION:

User selects an invalid target of an order. E.g. User orders the unit to gather
resources from a non-resource object, or empty location.

1. Notify user of invalid order.
2. Abort order - return to state before order was given.

‘ User Interface ‘ ‘ Game Logic ‘ ‘ Graphics ‘ ‘ Game Data ‘

(from Technology Modules) (tromMbdules) (from Technology Modules) (rom Mpdules)

JIPlayer Clicks Mouse

JIReceive mouse click notificatign

IIProcess Button Action

/isend order tolselected object
g u

(trom Garme Analysis - Use Case and Dynaric View)

nalysis: Give unit an order by clicking order button (Lagical Modules Invol

et tthe sis ley ow
1.0 esign. They me wolved,
9/29/2004 4:33:18 PM not necessarily ho

e
ed: 11/5/2004 2:13:01 PM

This diagram shows what logical modules are required to perform the "Give Unit an
Order" use-case.

Figure 58 : Analysis: Give unit an order by clicking order button (Logical Modules
Involved)

134

Analysis: Give unit an order by clicking order button (Logical Modules Involved)
Messages

Messag | From To Notes

I |e Object | Object

D

1 | //Player | Player | User Player clicks mouse
Clicks Interfac | cursor over an object
Mouse e

2 | /IRecei | User Game Pass the mouse click to
ve Interfac | Logic the game logic to
mouse | e determine the action .
click
notifica
tion

3 | /[Deter | Game Game Determine which game
mine Logic Logic view was clicked... in this
view case its the command
click button view.
occurre
din

4 | /ICalcul | Game Graphic | Get the screen
ate Logic S coordinates of the objects
world
coordin
ates of
mouse
click
within
view

5 | //Get Game Game Get the button object that
Button | Logic Data is at the screen location.
that was
pressed

6 | //[Proces | Game Game Determine order that was
S Logic Logic clicked
Button
Action

7 | //Send | Game Game Send order command to
order to | Logic Data the selected object.
selected
object

This diagram shows the sequence of events at the component level that occur to

ver

System (Ticked

Object & Object

User Interface ‘

(irom Game Analysis - Use]

Jicapturel

se and Dynanic View)

mouse click

[m]

o

UTick Ul System

l1Send mouse click to viewlobject

ITick Opject Sysiem

(from Game Analysis - Use Case and Dynaric View)

Updated

Design
Jeff Plu
10

913012004 9:23:07 AM
11/5/2004 2:18:43 PM

This diagram is specific to the simple
design used in thisthes's.

complete the "Give unit an order" use case.

Figure 59 : Design: Give unit an order (Component Sequence)

Design: Give unit an order (Component Sequence) Messages

Messag | From To Notes
Il |e Object | Object
D
1 | //Captur | Player | User
e mouse Interfac
click e
2 | llTick System | User Ticking the Ul system
Ul (Ticked | Interfac | tells the Ul Component to
System |) e grab the status of all Ul
devices, or atleast update
variables based on the Ul
events that occurred.
3 | //Send | User Object | Tell any Ul event
mouse | Interfac | & listening objects in the
clickto | e Object | game object component
view/ob Manage | about the mouse
ject ment movement.

System

/iDetermine clicked object - an order button

liSend object the mouse click

(Data)
/[Deter | Object | Object | In this simple design,
mine & & when the graphics engine
clicked | Object | Object | isticked the graphics
object - | Manage | Manage | engine updates the screen
an order | ment ment coordinate position. We
button | System | System | then use that value to
(Data) (Data) | determine which object
was clicked.
/[Send | Object | Object | Tell the object it's been
object | & & clicked. It will process
the Object | Object | the click when the object
mouse | Manage | Manage | itself is ticked.
click ment ment
System | System
(Data) (Data)
/[Tick System | Object | In this simple design the
Object | (Ticked | & game logic resides in the
System |) Object | object system, so ticking
Manage | the object component is
ment the same as processing all
System | game logic.
(Data)
/IProces | Object | Object | Objects are processesed
S & & in batch performing the
Objects | Object | Object | game logic.
Manage | Manage
ment ment
System | System
(Data) (Data)
/[Clicke | Object | Object | The game logic for the
d Order | & & button object is to send
button | Object | Object | an order command to the
sends Manage | Manage | selected object.
order to | ment ment
the System | System
selected | (Data) (Data)
unit
//Object | Object | Object | When the object receives
S & & an order command, it sets
adjusts | Object | Object | its state accordingly.
state Manage | Manage
accordi | ment ment
ng to System | System
order (Data) (Data)

136

137

A-1.1.1.3.1.3.1.1.5 Move to Location

Type: public UseCase
Package: Play Starcraft

Tell an object to move from it's current location to a specific destination.

Scenarios
Order with target destination {Basic Path}.
After giving the order, the target destination of the order "move" must be selected.

1. Player clicks the move button.
2. Player clicks a destination location on the map.

show
olved, not

This diagram shows what logical modules are required to perform the "Move to
Location" use-case.

Figure 60 : Analysis: Move to Location (Sub-system Interactions)

Analysis: Move to Location (Sub-system Interactions) Messages

Messag | From To Notes
e Object | Object

|
D
1

Player | Analysi | Call the "Analysis: Give

s: Give | unitan order™ use case
unit an
order by
clicking
order
button
(Sub-
Systems
Involve
d)
Analysi | Game Represents the beginning
s: Give | Logic of the details specific to
unit an this "Give Unit an Order"
order by interaction.
clicking
order
button
(Sub-
Systems
Involve
d)
//Set Game Game Game logic tells the
object | Logic Data object to prepare for an
state to input selecting the target
- "Move locatio for that unit to
- move to.
awaitin
g
destinat
ion
location
//Mouse | Player | User Player clicks on
Click Interfac | movement destination on
on e the map.
location
/[Tell User Game The game logic will
game Interfac | Logic process the mouse click
logic e
about
mouse
click
//Set Game Game Tell the object waiting for
selected | Logic Data a movement target, to
object's target the location that

138

destinat has just been clicked.
ion

7 | /[Calcul | Game Al The Al logical module
ate Logic will determine how the
move object should behave - in

this case how the object
will behave in order to
move from one location
to another.

8 | //Get Al Game The Al functionality
object Data requires object data to
data process like current

position, target position,
etc.

9 | /IGet Al Game The Al functionality
maneuv Data requires map navigation
er data to process. The
network navigation map is data

that says how an object
can move from one
location to another.

1 | //Calcul | Al Al Using the object data and

0 | ate map information the Al
move logical module will

determine what the object
should do. It will decide
the path the object will
travel to the destination.

1 | //Updat | Al Game Once the Al functionality

1 | edata Data has decided what the

object will do, the data /
state information must be
saved inside the object.

139

Player

System (Ticked

Object & Object
Management System
(Data)

User Interface ‘

‘Artificial Inlelllgence‘

i (fomGame Analysis - Usd Case and Dynamc View)

Iiclick Mou

Set object state to “Moy,

UTick Ul System

I18dnd Ul Eventsto Listening Qpjekts

ITick

ITick Al System

(from Game Analysis - Use Case and Dynamic View)

Name: Design: Move to Location (Component Sequence)
Author: Jeff Plummer This diagram is specific to the simple
Version design used in thisthesis.

1.0
ed: 9/30/2004 3:01:14 PM
ed: 11/5/2004 2:25:11 PM

IlUpdate data

- awaiting destination”

IiCalculate maneuver

This diagram shows the sequence of events at the component level that occur to
complete the "Move to Location" use case.

Figure 61 : Design: Move to Location (Component Sequence)

Design: Move to Location (Component Sequence) Messages

Messag
e

To
Object

From
Object

Notes

Player | Design:
Give
unit an
order
(Compo
nent
Sequenc

e)

Call the "Give Unit an
Order" use case.

Design: | Object
Give &
unitan | Object
order Manage
(Compo | ment
nent System
Sequenc | (Data)

€)

Represents the beginning
of the order specific
interaction details.

140

Set Object | Object | In this design the game
object | & & logic resides within the
stateto | Object | Object | game object itself, so the
"Move - | Manage | Manage | object readies itself for
awaitin | ment ment receiving the movement
g System | System | destination.
destinat | (Data) (Data)
ion"
/[Click | Player | User The player clicks the
Mouse Interfac | mouse button on a
e location on the map.
/[Tick System | User Ticking the Ul system
Ul (Ticked | Interfac | tells the Ul Component to
System |) e grab the status of all Ul
devices, or atleast update
variables based on the Ul
events that occurred.
//Send | User Object | Tell any Ul event
Ul Interfac | & listening objects in the
Events |e Object | game object component
to Manage | about the mouse
Listenin ment movement.
g System
Objects (Data)
/[Tick System | Object | In this simple design the
Object | (Ticked | & game logic resides in the
System |) Object | object system, so ticking
Manage | the object component is
ment the same as processing all
System | game logic.
(Data)
//Set Object | Object | The game logic in the
destinat | & & listener object sets the
ion Object | Object | selected object's
Manage | Manage | movement destination.
ment ment
System | System
(Data) (Data)
/[Tick System | Artificia | In this design the Al
Al (Ticked | I resides in its own
System |) Intellige | component and will be
nce "ticked" to tell the Al
system to operate on a list
of objects.
//Get Acrtificia | Object | In this design the Al

141

0 | object |1 & system will request list(s)
data Intellige | Object | of objects to process.
nce Manage | The Object management
ment component is responsible
System | for providing the domain-
(Data) | specific component list(s)
of relavant objects (i.e.
not ALL the objects).
1 | /IGet Artificia | Object | The Al system will
1 | maneuv | I & require some form of
er Intellige | Object | traversability map of the
network | nce Manage | object system. The
ment traversability map is
System | important so the object
(Data) | can travel to the resource
target.
1 | //Calcul | Artificia | Artificia | Using the object data and
2 | ate I I map information the Al
maneuv | Intellige | Intellige | component will
er nce nce determine what the object
should do. It will decide
how the object should
move.
1 | //Updat | Artificia | Object | Update the object with
3 | edata I & data specific to the gather
Intellige | Object | behavior the Al
nce Manage | component decided.
ment
System
(Data)

A-1.1.1.3.1.3.1.1.6 Research Technology

public UseCase
Play Starcraft

Type:
Package:

142

New technologies that enhance units, or provide new unit actions can be researched by
many buildings. Research takes time and resources.

Scenarios

Click research command button {Basic Path}.

1. Player clicks the research command.
2. Unit begins a timed research process.

3. Research timer is updated during research process.
4. Upon completion, the unit is upgraded with the new ability.

et /
Analysis: Give unit an order by clicking order button (Sub-Systems Inv olv ed)

This diagram shows what logical modules are required to perform the "Research
Technology" use-case.

Figure 62 : Analysis: Research Technology (Sub-System Interaction)

Analysis: Research Technology (Sub-System Interaction) Messages

Messag | From To Notes
e Object | Object

Player | Analysi | Call the "Analysis: Give
s: Give | unit an order" use case
unit an
order by
clicking
order

button

(Sub-

Systems
Involve
d)

Analysi | Game Represents the beginning
s: Give | Logic of the details specific to
unit an this "Give Unit an Order"
order by interaction.

clicking
order
button
(Sub-
Systems

143

Involve
d)
3 | //Set Game Game Game logic tells the
object | Logic Data object to begin
state to researching a technology
researc
hing
technol
ogy

(from Garme Analysis - Use Case and Dynanic View)

Author.
ersion:

Created:

Updated

i (fom Game Analysis - Us Case and Dynarmic View)

|

[

Desi

gn: Give unit an order (Component Sequence)

Design: Research Technology (Component Sequence)

Jeff Plummer
1.0

9/30/2004 3:27:29 PM
11/5/2004 2:26:01 PM

IITick Object System

//Object performs research process

This diagram shows the sequence of events at the component level that occur to
complete the "Research technology" use case.

Figure 63 : Design: Research Technology (Component Sequence)

Design: Research Technology (Component Sequence) Messages

Messag | From To Notes
I |e Object | Object
D
1 Player Design: | Call the "Give Unit an

Give

Order" use case.

144

unit an
order
(Compo
nent
Sequenc
€)

2 Design: | Object | Represents the beginning
Give & of the order specific
unitan | Object | interaction details.
order Manage
(Compo | ment
nent System
Sequenc | (Data)
€)

3 | l[Tick System | Object | In this simple design the
Object | (Ticked | & game logic resides in the
System |) Object | object system, so ticking

Manage | the object component is
ment the same as processing all
System | game logic.

(Data)

4 | //IObject | Object | Object | Ticking the object that is
perform | & & performing technology
S Object | Object | research sets it to increase
researc | Manage | Manage | its research progress.
h ment ment
process | System | System

(Data) (Data)

A-1.1.1.3.1.3.1.1.7 Select Object

public UseCase
Play Starcraft

Type:
Package:

Selectable objects include units, buildings, resources, and wild creatures.

Scenarios

Mouse click on unit {Basic Path}.

Description: Player clicks the left mouse button over a unit in the main view

screen.

1. Tell unit is has been selected.
2. Tell views that an object(s) has been selected.

145

(from Game Analysis - Use Case and Dynamic View)

(irom Technology Modules) (from Mbdules) (from Technoliogy Modules) (from Mbdules)
/iCapture Mouse Click

o
JiDetemine view the click occufred in

Jicalculate world poordinates of mous click withih view

IiGet object that was clicked on

JiPerform game logic on objeci

[H /1update dbject data

Atthe analysis level, these interactions are not meant to show
:”EE :‘f‘;‘gf* Select Object (Logical Modules Involved) design. They merely show which logical modules are involved, not
v: o]Ln ummer necessarily how the functionality getsimplemented.
Cre 912912004 4:56:34 PM
p 11/5/2004 2:26:13 PM

This diagram shows what logical modules are required to perform the "Select
Object" use-case.

Figure 64 : Analysis: Select Object (Logical Modules Involved)

Analysis: Select Object (Logical Modules Involved) Messages

Messag
e

From
Object

To
Object

Notes

/[Captur
e
Mouse
Click

Player

User
Interfac
e

Players clicks the mouse
over the graphical
representation of a game
object.

/IReceli
ve
notifica
tion of
mouse
click

User
Interfac
e

Game
Logic

Pass the mouse click to
the game logic to
determine the action .

[[Deter
mine

Game
Logic

Game
Logic

Determine which game
view was clicked... in this

146

view
the
click
occurre
din

case its the main game
view.

/[Calcul
ate
world
coordin
ates of
mouse
click
within
view

Game
Logic

Graphic
S

Get the screen
coordinates of the objects

/1Get
object
that was
clicked
on

Game
Logic

Game
Data

Get the game object that
Is at the screen location.

IIPerfor
m game
logic on
object

Game
Logic

Game
Logic

Tell the object it's been
selected

/[Updat
e object
data

Game
Logic

Game
Data

Update the data so it is
drawn with a green circle
around it, and mark it as
reciever of any new
orders.

147

o

A

Player

System (Ticked) Graphics 3D System

nnnnnnnnnnnnn
(0a

(frdm Game Analysis - Usq Case and Dynamic View) |
: JiCaptue mouse click

o !

ITickUl System

IiUpdatg Dbject] View listening tgmuse click

/IDetemine Clicked Object

Uisend object the mouse click

IITick objelct system

raphical ob;

ject as child to selected object

IITick Graphics System |

| o /Getvisible Objects
- s

JiProcess Visible Objects

IiDraw visibile objects

quence) This diagram is specific to the simple
design used in this thesis

Versi
Created: 9/30/2004 8:56:51 AM
Updated: 11/5/2004 2:26:29 PM

This diagram shows the sequence of events at the component level that occur to
complete the "Select Object" use case.

Figure 65 : Design: Select Object (Component Sequence)

Design: Select Object (Component Sequence) Messages

Messag | From To Notes
Il |e Object | Object
D
1 | //Captur | Player | User
e mouse Interfac
click e
2 | /lTick System | User Ticking the Ul system
Ul (Ticked | Interfac | tells the Ul Component to
System |) e grab the status of all Ul
devices, or atleast update
variables based on the Ul
events that occurred.
3 | //Updat | User Object | Tell any Ul event

e Interfac | & listening objects in the
Object/ | e Object | game object component
View Manage | about the mouse
listenin ment movement.

gto System

148

mouse (Data)
click
/[Deter | Object | Object | In this simple design,
mine & & when the graphics engine
Clicked | Object | Object | isticked the graphics
Object | Manage | Manage | engine updates the screen
ment ment coordinate position. We
System | System | then use that value to
(Data) | (Data) | determine which object
was clicked.
/[Send | Object | Object | Tell the object it's been
object | & & clicked. It will process
the Object | Object | the click when the object
mouse | Manage | Manage | itself is ticked.
click ment ment
System | System
(Data) (Data)
/[Tick System | Object | In this simple design the
object | (Ticked | & game logic resides in the
system |) Object | object system, so ticking
Manage | the object component is
ment the same as processing all
System | game logic.
(Data)
/[Proces | Object | Object | Objects are processesed
smouse | & & in batch performing the
click Object | Object | game logic.
event Manage | Manage
ment ment
System | System
(Data) (Data)
//Set Object | Object | The object that received
stateto | & & the mouse click processes
selected | Object | Object | itto setit's state to
Manage | Manage | selected.
ment ment
System | System
(Data) (Data)
//Add Object | Object | Set drawing info to say it
green & & has a green circle around
circle Object | Object | it.
graphic | Manage | Manage
al ment ment
object | System | System
as child | (Data) (Data)

149

to
selected
object
1 | /[Tick System | Graphic | Ticking the graphics
0 | Graphic | (Ticked |s3D system tells the graphics
S) System | Component to draw all
System visible objects on the
screen.
1 | //Get Graphic | Object | Get the views and object
1 | visible |s3D & lists to draw.
Objects | System | Object
Manage
ment
System
(Data)
1 | /IProces | Graphic | Graphic | process the visible object
2 |s s3D s3D as a batch.
Visible | System | System
Objects
1 | //Draw | Graphic | Graphic | Draw the objects based
3 | visibile |s3D s3D on their graphics data,
objects | System | System | and the view context.

A-1.1.1.3.1.3.1.1.8 Building construct Unit

public UseCase
Play Starcraft

Type:
Package:

This unique order cause a building to construct a unit

A-1.1.1.3.1.3.1.1.9 Give Building an order

public UseCase
Play Starcraft

Type:
Package:

150

Most buildings have the ability to carry out certain orders like constructing military units,

or performing research.

A-11.13.13.1.1.10

Type:
Package:

Hold Position

public UseCase
Play Starcraft

151

Orders unit to stay at its current location. Do not follow enemies to attack them.

A-11.13131111 Manipulate Object Resources

Type: public UseCase
Package: Play Starcraft

When you mine a resource (from a gyser object or a crystal object), you are reducing the
amount of resources available in that object.

A-11131.3.1.1.12 Manipulate Player Resources

Type: public UseCase
Package: Play Starcraft

Add / subtract from the resources the player has. Resources are used as "money" to build
and research.

A-11.13.13.1.1.13 Modify Doable Commands

Type: public UseCase
Package: Play Starcraft

Display icons representing the commands available to the user at this time.

A-1.113131.1.14 Patrol Location

Type: public UseCase
Package: Play Starcraft

Unit will move back and forth in an attack ready state between the objects current
location and the target destination.

A-1.11.3.13.1.1.15 Stop Movement

Type: public UseCase
Package: Play Starcraft

Orders a unit to halt its current movement command.

A-111313.1.1.16 Unit Construct Building
Type: public UseCase

152
Package: Play Starcraft

This unique order causes a unit to construct a building

153

A -1.1.1.3.1.4 Design: Tick Starcraft System

The artifacts contained within this package show many of the architectural independent
artifcats reworked using the simple proposed design. They are merely meant to show
another view into how logic flows using the proposed architecture, and the simple design.

This diagram shows the various "ticking™ of the different domain-specific systems to
create the game of Starcraft(tm).

This diagram is specific to the simple
Version: 1.0

design used in this thesis.
Created: ~ 8/23/2003 7:41:29 PM

Name: Tick Starcraft Game System
Author: Jeff Plummer
Updated: 11/5/2004 2:04:02 PM

Tick User Interface
| «include»
i
i
i

(from Tick Ul Component)

(from Tick Al System)

ick Object System
Game Logic
o>

|
«include»

o
P
P
Vo
P
P
o
P
P
o
P
P
b
System A "
Ticked
ick Starcraft Game
System
v ————ee
o . o
(from Game Analysis - Use Case and Dynamic View) 3 3 «includesss Tick Audio System
Vo
[
Vo
[
Vo
[

(from Tick Object Component)

(from Tick Audio System)

Vo

Vo

Vo

Vo

P

R NSy ick Network System
' «include»
|

i

i

|

i

i

(from Tick Network Component)

|

i

i

i

i

1 Tick Graphics

L,,,,,,,,,,,,,,,,,,,,,,,,> System
«include»

(from Tick Graphics System)

Figure 66 : Tick Starcraft Game System

154

A-1.1.1.3.1.4.1.1.1Tick Starcraft Game System

Type: public UseCase
Package: Design: Tick Starcraft System

This design dependent use case represents the process of ticking all the domain-specific
components to create the game behavior.

155

A-1113142 Tick Al System

The diagram shows the use cases involved in the ticking of the Al component that is
needed for the game of Starcraft(tm).

Figure 67 : Tick Al System

A-1.1.13.1.4.2.1.1Tick Al System

Type: public UseCase
Package: Tick Al System

Tick the artificial intelligence component. Execute Al operations that determine what the
the objects intend to do next.

Starcraft Al system will determine computer players' decisions, an object's next move,
and some Al state information.

Scenarios
Tick Al System {Basic Path}.
1. Request views/object lists of Al objects to process.
2. Read object Al related information (state, etc.).
3. Process objects.

NOTE: Objects don't exist in a vacuum. The Al system could provide
messaging, etc. for Al interactions to take place between objects.

System (Ticked

T
(from Game Analysis - Usg Case and Dynamic View)
i

/ITick Al System

Artificial Intelligence

Object & Object
Management System
(Data)

T

Name: Design: Tick Al System (C

//Update Object Data

/IRequest Objects to Process

T
//IBased on object info perform Al i
i

Author. Jeff Plummer

Version 1.0

Created 11/2/2004 1:05:37 PM
Updated: 11/56/2004 2:27:51 PM

Thisdiagram is specific to the simple
design used in thisthesis.

This diagram shows the sequence of events at the component level that occur to
complete the "Tick Al System" use case.

Figure 68 : Design: Tick Al System (Component Sequence)

Design: Tick Al System (Component Sequence) Messages

Messag | From To Notes
Il |e Object | Object
D
1 | /[Tick System | Artificia | In this design the Al
Al (Ticked |1 resides in its own
System |) Intellige | component and will be
nce "ticked" to tell the Al
system to operate on a list
of objects.
2 | /IReque | Artificia | Object | Request list(s) of objects
st I & that require Al
Objects | Intellige | Object | processing.
to nce Manage
Process ment
System
(Data)
3 | //Based | Artificia | Artificia | Objects are like state
on I I machines and depending
object Intellige | Intellige | on their state, different
info nce nce types Al processing will
perform be done for each object.

156

Al
4 | /lUpdat | Artificia | Object | After Al object
e I & processing has
Object | Intellige | Object | completed, update the
Data nce Manage | object data.
ment
System
(Data)

A-1.1.1.3.1.4.2.1.2 Navigate Map - Pathfinding

public UseCase
Tick Al System

Type:
Package:

This represents the process that will analyze the map, and provide a potential path to a

location.

System (Ticked

(from Game Analysis - Use] Case and Dynanic View)

Object & Object

perform movement Al

Artificial Intelligence
Management System
(Data)

et /

Design: Tick Al System (Component Sequence)

Design: Navigate Map -
. Jeff Plummer

10
12/23/2003 9:14:52 PM
11/5/2004 2:28:12 PM

equest Map info relative to current opjegt

"L

/icalculate path

IIwiite movement info to object

Pathfinding (Component Sequence)

This diagram shows the sequence of events at the component level that occur to
complete the "Navigate Map" use case.

Figure 69 : Design: Navigate Map - Pathfinding (Component Sequence)

Design: Navigate Map - Pathfinding (Component Sequence) Messages

Messag | From To Notes
I |e Object | Object
D
1 System | Design:
(Ticked | Tick Al

157

) System
(Compo
nent
Sequenc
€)

2 Design: | Artificia | During the coarse of
Tick Al || ticking the Al system, an
System | Intellige | object requires Al to
(Compo | nce move, and therefore
nent needs to perform
Sequenc pathfinding Al.
€)

3 | //Reque | Artificia | Object | The object system has
stMap || & map and traversability
info Intellige | Object | information.
relative | nce Manage
to ment
current System
object (Data)

4 | /ICalcul | Artificia | Artificia | Perform pathfinding Al
ate path | | I to determine the

Intellige | Intellige | movement path the object
nce nce should take.

5 | //Write | Artificia | Object | Update the object with
movem | | & the movement
entinfo | Intellige | Object | information.
to nce Manage
object ment

System
(Data)

A-1.1.1.3.1.4.2.1.3 Attack

public UseCase
Tick Al System

Type:
Package:

158

When an object performs an "attack™ action, the object will cycle and send out an attack
message, that should remove hitpoints, etc.

A-1.1.1.3.1.4.2.1.4 Calculate Al State

public UseCase
Tick Al System

Type:
Package:

159

A-1.1.1.3.1.4.2.1.5 Calculate Next Movement

Type: public UseCase
Package: Tick Al System

Determine the object's next movement direction. This depends on the object's state and
destination. For example if the unit is resource gathering it's movement should sort of
"wander" around the resource gathering resources. If it's a move or attack command
state, it should move in the fastest path to the target.

Example states:

1. MOVE (move toward the target location)
2. MOVE_TO_ATTACK (move toward the target object)
3. ATTACKING (Object shouldn't move)

An example of an object chasing another object attacking it, the object would change
states from MOVE_TO_ATTACK to ATTACKING back and forth while it attacks the
fleeing creature.

A-1.1.1.3.1.4.2.1.6 Calculate unit action

Type: public UseCase
Package: Tick Al System

For each unit, review the object state and determine it's next course of action.

The map watcher may have put the object in an "attack™ state or "move to attack" state in
which it will move or attack.

A-1.1.1.3.1.4.2.1.7 Execute Map Watcher

Type: public UseCase
Package: Tick Al System

NOTE: This is just one possible way of doing things.

Map watcher tracks object zones. Objects register zones to watch, when an object enters
their zone, they receive a message.

160

All objects will register a zone of sight so they receive messages when an enemy
becomes visible.

Objects will also register "attack™ and "move to attack™ zones. When an enemy enters the
"move to attack" zone, the object will move toward the object until it enters it's "attack™
zone. When an object enters it's "attack™ zone it attacks.

161

A-1.1.1314.3 Tick Audio System

The diagram shows the use cases involved in the ticking of the Audio component that is
needed for the game of Starcraft(tm).

design used in thisthesis.
Created: 12/22/2003 11:35:46 PM

Name: Tick Audio System

Author: Jeff Plummer Thisdiagram is specific to the simple
Version: 1.0

Updated: 11/4/2004 4:36:49 PM

System

(Ticked)
Tick Starcraft | Tick Audio System
Game System «include»

(from Game Analysis - Use Case and DyngfrigrMesin: Tick Starcraft System)

Figure 70 : Tick Audio System

A-1.1.1.3.1.4.3.1.1Tick Audio System

Type: public UseCase
Package: Tick Audio System

Tick the audio component. Play Background music, and play sound effects that have
been signaled.

1. Get List of objects making sounds from obj component.
2.

Scenarios
Tick Audio System {Basic Path}.
1. Request views/object lists of Audio objects to process.
2. Read object Audio related information (state, etc.).
3. Enque sounds

This diagram shows the sequence of events at the component level that occur to

System (Ticked!

Audio

T
(from Game Analysis - Usd Case and Dynamic View)

/ITick Audio Component

Name Design: Tick Audio System (Component
Author: Jeff Plummer

Version 1.0

Created: 11/2/2004 1:24:02 PM
Updated: 11/5/2004 2:28:37 PM

/IPlay the sound

Object & Object
Management System

(Data)

quest list of relavant objects making sound

design used in this thesis,

This diagram is specific to the simple T

complete the "Tick Audio System™ use case.

Figure 71 : Design: Tick Audio System (Component Sequence)

Design: Tick Audio System (Component Sequence) Messages

Messag | From To Notes
I |e Object | Object
D
1 | /[Tick System | Audio In this design the Audio
Audio | (Ticked resides in its own
Compo |) component and will be
nent "ticked" to tell the Audio
system to operate on a list
of objects.
2 | //IReque | Audio Object | Request list of objects
st list of & near the “camera" that are
relavant Object | currently making sounds.
objects Manage
making ment
sound System
(Data)
3 | /IPlay Audio | Audio Send the sounds to the
the sound card
sound

162

163

164

A-1.1.13.14.4 Tick Graphics System

The diagram shows the use cases involved in the ticking of the Graphics component that
is needed for the game of Starcraft(tm).

Figure 72 : Tick Graphics Component

A-1.1.1.3.1.4.4.1.1 :1GraphicsObjectSystem

Type: public «interface» Sequence instance : (IGraphicsObjectSystem)
Package: Tick Graphics System

A-1.1.1.3.1.4.4.1.2 Update View Object

Type: public UseCase
Package: Tick Graphics System

This use case represents the functionality required to update each individual object visible
in the view.

System (Ticked) Graphics Object & Object
Management System

(Data)

(from Game Analysis - Usd Case and Dynanic View)

Design: Update View - (Component Sequence)
] /lUpdate View Object Data
>

Author: Jeff Plummer
Verson: 1.0

Created: 11/2/2004 2:09:30 PM
Updated: 11/5/2004 2:29:01 PM

This diagram is specific to the simple

Name Design: Update View Object (Component Sequence)
design used in this thesis. T

This diagram shows the sequence of events at the component level that occur to
complete the "Update View Object™ use case.

Figure 73 : Design: Update View Object (Component Sequence)

Design: Update View Object (Component Sequence) Messages

Messag | From To Notes
I |e Object | Object
D
1 System | Design:
(Ticked | Update
) View -
(Compo
nent
Sequenc
€)
2 Design: | Graphic
Update |s
View -
(Compo
nent
Sequenc
€)
3 | //Updat | Graphic | Object | Update things like
eView |s & animation state, screen

165

166

Object Object | coordinates etc.
Data Manage

ment

System

(Data)

A-1.1.1.3.1.4.4.1.3Tick Graphics System

Type: public UseCase
Package: Tick Graphics System

Tick the graphics component. Draw whatever needs to be drawn.

Starcraft has several different viewports that need to be drawn, as well as the gui. Things
like the main view, the minimap etc.

Scenarios
Tick Graphics System {Basic Path}.
1. Request views/object lists of objects to graphically process.
2. Read object graphics related information (position, graphics resource.).
3. Process/Draw objects.

A-1.1.1.3.1.4.4.1.4 Update View

Type: public UseCase
Package: Tick Graphics System

Update view is the generic functionality that is extended by the specialized view updates.

This diagram shows the sequence of events at the component level that occur to

System (Ticked

Graphics 3D System

(Data)

(from Game Analysis - Usd Case and Dynamic View)

Object & Object
Management System

/ITick Graphics System

Name Design: Update View - (Component Sequence)

Author: Jeff Plummer

Version 1.0

Created: 2/21/2004 2:51:17 PM
Updated: 11/5/2004 2:29:13 PM

complete the "Update View" use case.

Figure 74 : Design: Update View - (Component Sequence)

/IGet View

/lUpdate View

/IGet Objectsin View

/IDraw the objects

Thisdiagram is specific to the simple
design used in thisthesis.

7

Design: Update View - (Component Sequence) Messages

Messag | From To Notes
Il |e Object | Object
D
1 | //Tick | System | Graphic | In this design the
Graphic | (Ticked |s3D graphics resides in its
S) System | own component and will
System be "ticked" to tell the
graphics system to
operate on a list of
objects.
2 | /IGet Graphic | Object | Request view to be
View s3D & drawn.
System | Object
Manage
ment

167

System
(Data)
3 | //Updat | Graphic | Graphic | Update a view that is to
e View |s3D s3D be drawn
System | System
4 | [IGet Graphic | Object | Get the objects that are
Objects | s3D & visible in that view.
in View | System | Object
Manage
ment
System
(Data)
5 | /[Draw | Graphic | Graphic | Draw the objects using
the s3D s3D the view context.
objects | System | System

Figure 75 : Design: Update View (Class-Interface Sequence)

Design: Update View (Class-Interface Sequence) Messages

Messag
e

From
Object

To
Object

Notes

|
D
1

gsTick

Interface - Tick the

168

Graphic Graphics system.
sSyste
m(float)

2 | gsTick Implementation - Tick
Graphic the Graphics System.
sSyste
m(float)

3 | gsGetG Interface - Get Views of
raphics Graphics objects to
Views() process... This prototype

only contains one view.

4 | gsGetG Interface - Get the
raphics Graphics View Processor
ViewPr if it exists.
ocessor
9)

5 | CGraph Create a view processor if
icsView this view does not yet
Process have one - i.e. this is our
or(IGra first time processing this
phicsVi view.
ew?,

SDL_S
urface*
)

6 | gsAssig Interface - Assign the
nGraphi view processor to the
csView view.

Process
or(IGra
phicsVi
ewProc
essor*)

7 | process Graphics Process the
View() view

8 | gsGetS Interface - Get the
ceneMa Scenemanager (structured
nager() list of objects to process)

9 | gsGetG Interface - Get Ordered
raphics list of objects to process.
Obijects
0

1 | gsGetG Interface - Get the

0 | raphics Graphics object processor
Process responsible for

169

orObjec processing this object.
tQ
1 | CGraph Create Graphics Object
1 | icsProc Processor Object if
essorOb necessary.
ject(IPr
ocessab
leGraph
icsObje
ct*)
1 | gsAssig Interface - Assign the
2 | nGraphi processor object to the
csProce game object.
ssorObj
ect(IGr
aphicsP
rocesso
rObject
*)
1 | gsGetG Interface - Get the
3 | raphics Graphics Resource
Resourc information required to
es() draw the object in 2D.
1 | //Create Create the entity using
4 | 2D SDL to manage sprites.
Sprite
1 | drawGr Perform Graphics
5 | aphicsO Processing on this object
bject()
1 | gsGetW I2DGra | Get the position of the 2D
6 | orldPos phicsOb | object
ition() ject
1 | gsCurre Interface - Get the sprite
7 | ntimage offset in the 2D image
Offsetl
nResou
rce()
1 | //Draw Use SDL to blit the sprite
8 | the
object
using

SDL

170

171

A-1.1.1.3.1.4.4.1.5 Update Main View

Type: public UseCase
Package: Tick Graphics System

Represents the process of the main display window updating to display the current state
of the game.

Scenarios
Basic {Basic Path}.
1. Get view frame (area to display).
2. Draw Terrain
3. Draw Objects

A-1.1.1.3.1.4.4.1.6 Draw Main View Objects

Type: public UseCase
Package: Tick Graphics System

Draw the game objects over the background.

A-1.1.1.3.1.4.4.1.7 Draw Main View Terrain

Type: public UseCase
Package: Tick Graphics System

Paint the terrain background on the screen.

A-1.1.1.3.1.4.4.1.8 Update All Views

Type: public UseCase
Package: Tick Graphics System

The Starcraft game has many "views" displayed on the screen during game play. There is
a mini-map view, the main game view, etc. Each of these views needs to be drawn.

A-1.1.1.3.1.4.4.1.9 Update Command Button View

Type: public UseCase
Package: Tick Graphics System

This view contains buttons that represent all the commands available for the selected
object(s).

172

A-11.13.1441.10 Update Mini Map View

Type: public UseCase
Package: Tick Graphics System

Update the small view that shows a miniature view of the entire game map.

A-11131441.11 Update Protrait View

Type: public UseCase
Package: Tick Graphics System

Update the protrait view that shows a picture or animation of the currently selected
object(s).

A-11131.4.4.1.12 Update Status View

Type: public UseCase
Package: Tick Graphics System

The status view shows the health and other stats of the currently selected object(s).

173

A-1.1.13145 Tick Network Component

The diagram shows the use cases involved in the ticking of the Network component that
is needed for the game of Starcraft(tm).

Version: 1.0 design used in this thesis.
Created: 9/11/2003 12:01:01 PM

Name: Tick Network Component
Author: Jeff Plummer Thisdiagram is specific to the simple
Updated: 11/4/2004 4:37:53 PM

System (Ticked,

(fom Game Analysis - Use Case and Dynaig X886 gn: Tick Starcraft System)

«incluew,

Figure 76 : Tick Network Component

A-1.1.1.3.1.4.5.1.1 Broadcast local objects TO server

Type: public UseCase
Package: Tick Network Component

The actions of the player controlled objects are broadcast to the server, so other
networked players can update their client machines.

Scenarios
Basic Path {Basic Path}.
1. Request necessary objects from Object Component -

(This will become more clear in the component interfaces, but basically the
object component will send a list of objects that are likely to be needed by the
network).

2. Send relevant changes to server.

A-1.1.1.3.1.45.1.2 Tick Network System

Type: public UseCase
Package: Tick Network Component

Send outgoing messages and respond to messages that have arrived from the network.

Scenarios

Tick Network System {Basic Path}.

1. Read received data.
2. Update objects with received data.

3. Request views/object lists of objects to write out to network.
4. Read object information to send (state, etc.).

5. Send info.

This diagram shows the sequence of events at the component level that occur to
complete the "Tick Network System™ use case.

System (Ticked

T
(from Game Analysis - Usd Case and Dynamic View)
;

Name
Author:
Version:
Created:

Updated:

Figure 77 : Design: Tick Network System (Component Sequence)

/ITick Network Component

Netw ork

Object & Object
Management System
(Data)

Design: Tick Network System (Component Sequence)

Jeff Plummer
1.0

11/2/2004 7:43:46 PM
11/5/2004 2:29:37 PM

fdate game objects with

/IProcess Data to Send

-

/IProcess Received Network Data !

/ISend data across network

received data

/IRequesyrglavant obects that want to send ngtwork data

Thisdiagram is specific
design used in this thesi

to the simple
s.

Design: Tick Network System (Component Sequence) Messages

Messag | From To Notes

I |e Object | Object

D

1 | /[Tick System | Networ | In this design the network
Networ | (Ticked |k resides in its own
k) component and will be

174

Compo "ticked" to tell the

nent network system to
operate on a list of
objects.

2 | //Proces | Networ | Networ | The network receiving of
S k Kk network data is in it's
Receive own thread, but act of
d doing something
Networ meaningful with the
k Data network data is

performed in the main
tick.

3 | //Updat | Networ | Object | Update the proper local
egame |k & objects with the updates
objects Object | that came from the
with Manage | network.
receive ment
d data System

(Data)

4 | /IProces | Networ | Networ
sData |k Kk
to Send

5 | /IReque | Networ | Object | The object managment
st k & system will determine
relavant Object | which objects are
obects Manage | relavant to networked
that ment computers and should
want to System | send their network data.
send (Data)
network
data

6 | //Send | Networ | Networ | Send the proper data
data k Kk across the network.
across
network

A-1.1.1.3.1.4.5.1.3 Update objects FROM server
public UseCase

Type:
Package:

Tick Network Component

175

Data will arrive from the server detailing the actions of networked players actions. The

network component will send the updates to the object component.

176

A-1.1.1314.6 Tick Object Component

The diagram shows the use cases involved in the ticking of the Object component (game
logic) that is needed for the game of Starcraft(tm).

Figure 78 : Tick Object Component

A-1.1.1.3.1.4.6.1.1Tick Object System / Game Logic

Type: public UseCase
Package: Tick Object Component

Tick the object component. The object component is responsible for performing an
actual action based on state information.

Starcraft's object system might evaluate the "Attacking" state and fire a bullet, change
animation states, etc.

In this simple design game logic and object management exist in the same component.
The object management portion updates the view structures so it will provide relavant
object lists. The game logic portion performs some minor game logic processing of
objects.

In hindsight this is bad, and game logic truly should be its own component. But since its
a design, not architecture problem, it wasn't worth fixing in the prototype.

Scenarios
Tick Object System / Game Logic {Basic Path}.
1. Update Views / object lists
2. Request views/object lists of objects to process.
3. Read object game logic related information (state, etc.).

4. Process objects.

177

System (Ticked) Object & Object

Management System
(Data)

T
(from Game Analysis - Us¢ Case and Dynamic View)
i

Name:
Author:
Version
Created:
Updated

/ITick Object System

/ITick Commander Objects

/ITick Unit Objects

Design: Tick Object / Game Logic System (Component)

Jeff Plummer
1.0 This diagram is specific to the simple

11/2/2004 8:06:20 PM design used in this thesis.
11/5/2004 2:30:15 PM

This diagram shows the sequence of events at the component level that occur to
complete the "Tick Object / Game Logic System" use case.

Figure 79 : Design: Tick Object / Game Logic System (Component Sequence)

Design: Tick Object / Game Logic System (Component Sequence) Messages

Messag | From To Notes
I |e Object | Object
D
1 | /lTick System | Object | This is equivalent to
Object | (Ticked | & telling the game to
System |) Object | perform game logic.
Manage
ment
System
(Data)
2 | llTick Object | Object | Tell the commanders to

Comma | & &

nder Object | Object | logic for the units it
Objects | Manage | Manage | commands.
ment ment

perform general game

System | System
(Data) (Data)

3 | /[Tick Object | Object | Perform Game logic on
Unit & & the individual units

Objects | Object | Object | themselves.

Manage | Manage
ment ment

System | System
(Data) (Data)

A-1.1.1.3.1.4.6.1.2 Update Commander Object

Type: public UseCase
Package: Tick Object Component

This use case represents the object performing the game logic relavant to the object.

The commander is responsible for performing the general strategy for the computer
player.

Scenarios
Basic Path {Basic Path}.
DESCRIPTION:

1. Update position based on speed and movement dir.

2. Perform action depending on state:
- If an object is in an ATTACKING state, it would fire it's weapon.
- etc.

A-1.1.1.3.1.4.6.1.3 Update Controlled Object

Type: public UseCase
Package: Tick Object Component

Represents performing game logic for an individual unit in the game.

178

A-1.1.13.14.7 Tick Ul Component

The diagram shows the use cases involved in the ticking of the Ul component that is

needed for the game of Starcraft(tm).

design used in thisthesis
9/10/2003 10:59:32 PM

ame: Tick Ul Component
uthor. Jeff Plummer This diagram is specific to the simple
11/4/2004 4:38:27 PM

i
System (Ticked) Tick Starcraft Yoocoo>
Game System wincludés \ Tick User Interface
(from Game Analysis - Use Case and Dynamic Vie AN,
(from Design: Tick Starcraft System) cnclude
Process Mouse

Figure 80 : Tick Ul Component

A-1.1.1.3.1.4.7.1.1 Process Keyboard

Type: public UseCase
Package: Tick Ul Component

A-1.1.1.3.1.4.7.1.2 Process Mouse

Type: public UseCase
Package: Tick Ul Component

A-1.1.1.3.1.4.7.1.3 Tick User Interface

Type: public UseCase
Package: Tick Ul Component

Tick the User Interface Component. Reads and processes all forms of input.

179

180

Starcraft Ul system will read mouse movements and mouse clicks.

Scenarios

Tick User Interface {Basic Path}.

1. Read captured keyboard/mouse events
2. Request views of keyboard/mouse listener objects.
3. Update game logic keyboard/mouse listener objects.

(from Game Analysis - Use

System (Ticked:

me:
uthor:

co<»z
P
2

reated
pdated

Case and Dynamic View)

User Interface Object & Object
anagement System
(Data)

/ITick Ul Component

H

1.0

Design: Tick User Interface (Component Seq)
Jeff Plumme;

N This diagram is specific to the simple
11/2/2004 8:14:10 PM design used in this thesis.

11/5/2004 2:30:39 PM

/lUpdate Ul Event Listening Objets

This diagram shows the sequence of events at the component level that occur to
complete the "Tick User Interface System" use case.

Figure 81 : Design: Tick User Interface (Component Sequence)

Design: Tick User Interface (Component Sequence) Messages

Messag | From To Notes
I |e Object | Object
D
1 | /[Tick System | User While the Ul event
Ul (Ticked | Interfac | collection may occurina
Compo |) e seperate thread, the main
nent thread (tick) will takes
those events and process
them.
2 | //Updat | User Object | Update the objects that
e Ul Interfac | & are responsible for
Event e Object | receiving Ul events.

Listenin

g -
Objets

Manage
ment
System
(Data)

When these Ul Listening
objects get ticked during
the "tick object
component"” game logic
will do something based
on the Ul events.

181

182

A -1.1.1.4 Unreal Tournament

This package represents the analysis and design work performed for the game Unreal
Tournament(tm).

A-1114.1 Use Cases

Name Use Cases Model
Author: Jeff Plummer
Version: 1.0

Created: 10/26/2004 9:50:53 AM
Updated 11/4/2004 4:38:52 PM

Play Unreal Tournament

=Y + Collect Ammo
Player [=] + Collect Health
(from Game Analysis - Use Case and Dynamic View) P=Y + Collect Item
=] + Collect Weapon
[=] + Jump
F=] + Move
System F=] + Rotate
F=] + Shoot

(from Game Analysis - U: ase and Dynamic View)
Design: Tick

+ Tick Al System

+ Tick Audio Component

+ Tick Graphics 3D Component

+ Tick Network Component

+ Tick Object Component

+ Tick Physics Component

+ TickUnreal Tournament Game System

System (Ticked)

(from Game Analysis - Use Case and Dynamic View)

Figure 82 : Use Cases Model

A-1.1.1.4.1.1Play Unreal Tournament

Figure 83 : Play Unreal Tournament

A-1.1141.1.1.1.1 Collect Ammo

Type: public UseCase
Package: Play Unreal Tournament

A-1.1.141.1.1.1.2 Collect Health

Type: public UseCase
Package: Play Unreal Tournament

A-11.141.1.1.1.3Collect Iltem

Type: public UseCase
Package: Play Unreal Tournament

183

184

g >0

‘ Game Logic ‘ ‘ Game Data ‘

(trom Mbdules) (trom Mbdules)

"7

Analysis: Move (Logical Modules Inv olved)

liGet objects that collided data

g |

JiPerform game logic due to collision

5;'

(from Garme Analysis - Use Case and Dynamic View)

At the analysis level, these interactions are not meant to show

Nam. Analysis: Collect ltem (Logical Modules Involved) K - d :

Author: Jeff Plummer design. They merely show which logical modules are involved,
Version: 1.0 not necessarily how the functionality gets implemented.

Created: 11/212004 9:20:50 PM

Updated: 11/412004 4:39:13 PM

Figure 84 : Analysis: Collect Item (Logical Modules Involved)

Analysis: Collect Item (Logical Modules Involved) Messages

Messag | From To Notes
e Object | Object

|

D
1 Player | Analysi
s: Move
(Logical
Module

S
Involve
d)
2 Analysi | Game A movement results in a
s: Move | Logic player's collision with an
(Logical "item" game object.
Module Could be a weapon, or
S health, etc.

Involve
d)

3 | //Get Game Game
objects | Logic Data
that

collided
data

4 | /IPerfor | Game Game Could be to increase
m game | Logic Logic player health, add ammo,

logic etc.
due to
collisio
n

A-11.14.1.1.1.1.4Collect Weapon

Type: public UseCase
Package: Play Unreal Tournament

A-111411.1.1.5Jump

Type: public UseCase
Package: Play Unreal Tournament

A-11.141.1.1.1.6Move

Type: public UseCase
Package: Play Unreal Tournament

185

(from Game Analysis - Use Case and Dynaric View)

Figure 85 : Analysis

>+0

(armow key or joystick mavement)

‘ User Interface ‘ ‘ Physics ‘ ‘ Game Logic ‘ ‘ Game Data ‘

(from Technology Modules) (from Technolbgy Modules) (from Mbdules)

Analysis: Move (Logical Modules Involved)
or. Jeff Plummer

10
111212004 9:12:33 PM
11/4/2004 4:39:22 PM

/isend Ul Evenyto Game Logic

/IPetfom collision detection and reqction

It

/1update player position

) (irom Mbdules)

erpret Movement -Move

Atthe analysis level, these interactions are not meant to show
design. They merely show which logical modules are involved,
not necessarily how the functionality gets implemented.

Analysis: Move (Logical Modules Involved) Messages

: Move (Logical Modules Involved)

Messag | From To Notes

I |e Object | Object

D

1 | //InputE | Player | User Player presses the an
vent Interfac | arrow movement key or
(arrow e moves the joystick
key or signalying an event.
joystick
movem
ent)

2 | //Send | User Game The game logic will
Ul Interfac | Logic determine how to
Event e interpret the Ul event.
to
Game
Logic

3 | llinterpr | Game Game The game logic
et Logic Logic determines that the
Movem players position needs to
ent - be moved based on the
Move input command.

186

4 | /lUpdat | Game Game Update the player's
e player | Logic Data position data.
position

5 | /[Perfor | Game Physics | Its an arbitrary decision
m Logic to say that the physics
collisio logical module performs
n the collision detection.
detectio This seems to be the
nand trend in commercial
reaction physics engines so I'm

just continuing the trend.

6 | /[Perfor | Game Game When you collide with
m Logic Logic certain objects (ammo,
collisio health, etc) game logic
n logic needs to get involved.

A-11.1411.1.1.7 Rotate

public UseCase
Play Unreal Tournament

Type:
Package:

A-111.41.1.1.1.8Shoot

public UseCase
Play Unreal Tournament

Type:
Package:

187

A-1.1.1.4.1.2 Design: Tick

Name Design: Tick
Author: Jeff Plummer This diagram is specific to the simple
Version 1.0 design used in this thesis.

Created: 11/2/2004 9:44:30 PM
Updated: 11/4/2004 4:39:37 PM

Tick Audio
Component

(from J4¢k Audio Component)

«intlude»

(from Tick Al System)

){ﬁC‘IUdE»
System (Ticked) Tick Unreal
Tournament Game
System -
(from Game Analysis - Use Case and Dynamic View) . «nclude>™ s g

Component

(from Tick Physics Component)

N, «inclitle»

«incldde»
N Tick Graphics 3D
Component

(from{ick Graphics 3D Component)

Tick Netw ork
Component

’ﬁx

(from Tick Network Component)

Figure 86 : Design: Tick

A-11.1.4.1.2.1.1.1 System (Ticked)

Type: public Object
Package: Game Analysis - Use Case and Dynamic View

This actor represents the System but implies the actions occur on a regular or clocked
basis.

188

A-1.1.1.4.1.2.1.1.2 Tick Physics Component

Type: public UseCase
Package: Tick Physics Component

A-1.1.1.4.1.2.1.1.3Tick Al System

Type: public UseCase
Package: Tick Al System

189

Tick the artificial intelligence component. Execute Al operations that determine what the

the objects intend to do next.

Starcraft Al system will determine computer players' decisions, an object's next move,

and some Al state information.

Scenarios
Tick Al System {Basic Path}.

1. Request views/object lists of Al objects to process.
2. Read object Al related information (state, etc.).

3. Process objects.

NOTE: Objects don't exist in a vacuum. The Al system could provide
messaging, etc. for Al interactions to take place between objects.

A-11.1.41.2.1.1.4Tick Audio Component

Type: public UseCase
Package: Tick Audio Component

A-1.1.1.41.2.1.1.5Tick Graphics 3D Component

Type: public UseCase
Package: Tick Graphics 3D Component

A-11.14.1.2.1.1.6 Note

Type: public Note
Package: Tick Graphics 3D Component

190

This diagram is specific to the simple design used in this thesis.

A-11.1.4.1.2.1.1.7 Tick Network Component

Type: public UseCase
Package: Tick Network Component

A-1.1.1.4.1.2.1.1.8Tick Unreal Tournament Game System

Type: public UseCase
Package: Design: Tick

191

A-1114122 Tick Al System

Figure 87 : Tick Al System

A-1.1.1.41.2.2.1.1Tick Unreal Tournament Game System

Type: public UseCase
Package: Design: Tick

A-11.1.4.1.2.2.1.2 System (Ticked)

Type: public Object
Package: Game Analysis - Use Case and Dynamic View

This actor represents the System but implies the actions occur on a regular or clocked
basis.

A-111.4.1.22.1.3Note
Type: public Note
Package: Tick Graphics 3D Component

This diagram is specific to the simple design used in this thesis.

A-1.1.1.41.2.2.1.4Tick Al System
Type: public UseCase

Package:

Tick Al System

System (Ticked)

T
(from Game Analysis - Usg Case and Dynamic View)
1

IITick Al System

192

Artificial Intelligence Object & Object
Management System
(Data)

Name: Design: Tick Al System (Component Sequence)

Author: Jeff Plummer

Version: 1.0

Created: ~ 11/2/2004 10:02:58 PM
Updated: 11/4/2004 4:39:54 PM

Y

/IRequest Objectsto Process
T
H

/IBased on object info perform Al |
I

/lUpdate Object Data

"o

This diagram is specific to the simple
design used in thisthesis.

Figure 88 : Design: Tick Al System (Component Sequence)

Design: Tick Al System (Component Sequence) Messages

Messag | From To Notes
I |e Object | Object
D
1 | /[Tick | System | Artificia | In this design the Al
Al (Ticked |1 resides in its own
System |) Intellige | component and will be
nce "ticked" to tell the Al
system to operate on a list
of objects.
2 | /IReque | Artificia | Object | Request list(s) of objects
st I & that require Al
Objects | Intellige | Object | processing.
to nce Manage
Process ment

System

(Data)
3 | //Based | Artificia | Artificia | Objects are like state
on I I machines and depending
object Intellige | Intellige | on their state, different
info nce nce types Al processing will
perform be done for each object.
Al
4 | //Updat | Artificia | Object | After Al object
e I & processing has
Object | Intellige | Object | completed, update the
Data nce Manage | object data.
ment
System
(Data)

A-1.1.1.4.1.2.2.1.5Tick Player

Type:
Package:

public UseCase

Tick Al System

Tick each computer and human controlled player object.

A-1.1.1.41.2.2.1.6 Tick Projectile

Type:
Package:

public UseCase
Tick Al System

193

This is an arbitrary decision, we are saying as part of ticking the player, the player will
tick all the projectiles the player has created. Basically this is simply for network player

functionality distribution.

A-11.1.41.23 Tick Audio Component

Name Tick Audio Component
Author: Jeff Plummer

Version: 1.0

Created: 11/3/2004 9:32:01 AM

Upd.

ated: 11/4/2004 4:40:11 PM

System (Ticked

(from Game Analysis - Use Case and Dynamic View)

design used in thisthesis.

Thisdiagram is specific to the simple

Tick Unreal
Tournament Game
System

«include»

(from Design: Tick)

Tick Audio
Component

Figure 89 : Tick Audio Component

A-11.1.4.1.2.3.1.1Tick Audio Component

public UseC
Tick Audio Component

Type:
Package:

ase

System (Ticked

T
(from Game Analysis - Use Case and Dynamic View)

Name!
Author.
Version
Created:

Updated:

! /ITick Audio Component

Audio

/IPlay the sound

Object & Object
Management System
(Data)

quest list of relavant objects making sound

Design: Tick Audio System (C
Jeff Plummer

1.0

11/3/2004 9:33:19 AM
11/3/2004 9:35:23 AM

design used in this thesis.

This diagram is specific to the simple

194

Figure 90 : Design: Tick Audio System (Component Sequence)

Design: Tick Audio System (Component Sequence) Messages

Messag | From To Notes
I |e Object | Object
D
1 | /[Tick System | Audio In this design the Audio
Audio | (Ticked resides in its own
Compo |) component and will be
nent "ticked" to tell the Audio
system to operate on a list
of objects.
2 | //IReque | Audio Object | Request list of objects
st list of & near the “"camera" that are
relavant Object | currently making sounds.
objects Manage
making ment
sound System
(Data)
3 | /IPlay Audio | Audio Send the sounds to the
the sound card

sound

195

196

A-11141.24 Tick Graphics 3D Component

Figure 91 : Tick Graphics 3D Component

A-1.1.1.41.2.4.1.1Tick Graphics 3D Component

Type: public UseCase
Package: Tick Graphics 3D Component

Design: Tick Graphics 3D Component (Component Sequence) Messages

Figure 92 : Design:

System (Ticked

Graphics 3D System

Object & Object
Management System
(Data)

T
(from Game Analysis - Usg Case and Dynamic View)

IITick Graphics 3D Component

>

Name: Design: Tick Graphics 3D Component (Component)

Author: Jeff Plummer

Version: 1.0

Created: 11/3/2004 12:19:25 PM
Updated: 11/4/2004 4:40:40 PM

/IRequest Views to Draw
>

/lUpdate Graphical View

/lUpdate Graphical Object (draw)

/lUpdate Graphical Object Data

This diagram is specific to the simple
design used in this thesis.

7

Messag | From To Notes
I |e Object | Object
D
1 | /[Tick System | Graphic | Ticking the graphics 3D
Graphic | (Ticked |s3D component causes all
s3D) System | visible views and objects
Compo to be drawn.
nent
2 | //Reque | Graphic | Object | Request views (context
st s3D & and object list) to draw.
Views | System | Object
to Draw Manage
ment
System
(Data)
3 | //Updat | Graphic | Graphic | For each view...
e s3D s3D
Graphic | System | System

al View

Tick Graphics 3D Component (Component Sequence)

197

4 | //Updat | Graphic | Graphic | Draw each graphical

e s3D s3D object using the view
Graphic | System | System | context.

al

Object

(draw)

5 | //Updat | Graphic | Object | Update an necessary data
e s3D & like screen coords that
Graphic | System | Object | may be used by other
al Manage | systems.

Object ment
Data System
(Data)

A-1.1.1.41.2.4.1.2 Update All Graphical Views

Type: public UseCase
Package: Tick Graphics 3D Component

A-1.1.1.4.1.2.4.1.3 Update Character Status Overlay

Type: public UseCase
Package: Tick Graphics 3D Component

A-1.1.1.4.1.2.4.1.4Update GUI Overlays

Type: public UseCase
Package: Tick Graphics 3D Component

A-1.1.1.41.2.4.1.5Update Main Play View

Type: public UseCase
Package: Tick Graphics 3D Component

198

(from Game Analysis - Usd Case and Dynamic View)

System (Ticked;

199

Graphics 3D System

Managem:
(D:

Object & Object
ent System
ta)

N

Design: Tick Graphics 3D Component (Component Sequence)

/IRequest View

IIProcess View Context

lIProcess Graphical Objec

JlUpdate Object Data

Name: Design: Update Main Play View (Component Sequence)
Author: Jeff Plummer This diagram is specific to the simple
Version 1.0 design used in thisthesis.

Created 11/3/2004 12:14:14 PM

Updated: 11/412004 4:40:55 PM

Figure 93 : Design: Update Main Play View (Component Sequence)

Design: Update Main Play View (Component Sequence) Messages

Messag
e

From
Object

To
Object

Notes

System
(Ticked

)

Design:
Tick
Graphic
s3D
Compo
nent
(Compo
nent
Sequenc

e)

Design:
Tick
Graphic
s3D
Compo
nent
(Compo

Graphic
s3D
System

During the course of
ticking the graphics 3D
component we come to
this functionality of
updating the graphical
view.

nent
Sequenc
e)

3 | //Reque | Graphic | Object | Request the view to draw

st View | s3D & from the object system.
System | Object
Manage
ment
System
(Data)

4 | /[Proces | Graphic | Graphic | Understand things like
sView |s3D s3D view size on screen,
Context | System | System | coordinate system,

camera location, etc.

5 | //Proces | Graphic | Graphic | Draw the objects in the
S s3D s3D object list of the view
Graphic | System | System | using the view context.
al
Objects

6 | //Updat | Graphic | Object | Update things like screen
e s3D & coords. data, etc. in case
Object | System | Object | other components require
Data Manage | that data.

ment
System
(Data)

A-1.1.1.41.2.4.1.6 Update Team Score Overlay

public UseCase
Tick Graphics 3D Component

Type:
Package:

A-11.1.41.2.4.1.7 Update Weapon/Ammo Overlay

public UseCase
Tick Graphics 3D Component

Type:
Package:

200

201

A-11.14125 Tick Network Component

Name Tick Network Component
Author: Jeff Plummer This diagram is specific to the simple
Y 1.0 design used in this thesis.
Created: 11/3/2004 12:55:58 PM

Updated: 11/4/2004 4:41:07 PM

Broadcast Local
Objects TO Server

7
System (Ticked) Tick Unreal

__«iticlude»
|
‘ Game f--------> Tick Network
System «includes Component
(from Game Analysis - Use Case and Dynamic View) -
(from Design: Tick) -
«includen
Update Local
Objects FROM
Server

Figure 94 : Tick Network Component

A-1.1.1.41.2.5.1.1 Broadcast Local Objects TO Server

Type: public UseCase
Package: Tick Network Component

A-1.1.1.4.1.2.5.1.2 Tick Network Component

Type: public UseCase
Package: Tick Network Component

(from Game Analysis - Use|

System (Ticked

202

Netw ork

Object & Object
Management System
(Data)

Case and Dynamic View)

/ITick Network Component

Name
Author: Jeff Plummer
Version: 1.0

Created
Updated

Design: Tick Network System (Component Sequence)

11/3/2004 12:58:16 PM
11/4/2004 4:41:14 PM

IIProcess Received Network Data
ate game objects with received dat

/IProcess Data to Send

B

obects that want to send nqtwork data

/ISend data across network

This diagram is specific to the simple
design used in this thesis.

Figure 95 : Design: Tick Network System (Component Sequence)

Design: Tick Network System (Component Sequence) Messages

Messag | From To Notes

I |e Object | Object

D

1 | /[Tick System | Networ | In this design the network
Networ | (Ticked |k resides in its own
k) component and will be
Compo "ticked" to tell the
nent network system to

operate on a list of
objects.

2 | //Proces | Networ | Networ | The network receiving of
S k Kk network data is in it's
Receive own thread, but act of
d doing something
Networ meaningful with the
k Data network data is

performed in the main
tick.

3 | //Updat | Networ | Object | Update the proper local
egame |k & objects with the updates

objects Object | that came from the
with Manage | network.
receive ment
d data System
(Data)

4 | /IProces | Networ | Networ
sData |k Kk
to Send

5 | //Reque | Networ | Object | The object managment
st k & system will determine
relavant Object | which objects are
obects Manage | relavant to networked
that ment computers and should
want to System | send their network data.
send (Data)
network
data

6 | //Send | Networ | Networ | Send the proper data
data k k across the network.
across
network

A-1.1.1.4.1.2.5.1.3 Update Local Objects FROM Server

Type:
Package:

public UseCase
Tick Network Component

203

204

A-11.14126 Tick Object Component

design used in this thesis.
Created: 11/3/2004 1:01:12 PM

Name: Tick Object Ci

Author Jeff Plummer This diagram is specific to the simple
Version: 1.0

Updated: 11/4/2004 4:41:26 PM

System (Ticked Tick Unreal
Tournament Game |ro-ccoccmoooo Tick Object
System «include» Component
(from Game Analysis - Use Case and Dynamic View)

(from Design: Tick)

Figure 96 : Tick Object Component

A-1.1.141.2.6.1.1Tick Object Component

Type: public UseCase
Package: Tick Object Component

205

System (Ticked Object & Object
Management System
(Data)

T
(from Game Analysis - Usg Case and Dynamic View)
i

Name:
Author:
Version:
Created
Updated

/ITick Object Component

Design: Tick Object Component(Component Sequence)
Jeff Plummer

1.0

11/3/2004 1:04:14 PM

11/4/2004 4:41:32 PM

/ITickCommander Objects

/ITick Unit Objects

Thisdiagram is specific to the simple
design used in this thesis.

Figure 97 : Design: Tick Object Component(Component Sequence)

Design: Tick Object Component(Component Sequence) Messages

Messag | From To Notes

I |e Object | Object

D

1 | /[Tick System | Object | This is equivalent to
Object | (Ticked | & telling the game to
Compo |) Object | perform game logic.
nent Manage

ment
System
(Data)

2 | llTick Object | Object | Tell the commanders to
Comma | & & perform general game
nder Object | Object | logic for the units it
Objects | Manage | Manage | commands.

ment ment
System | System
(Data) (Data)

3 | /l[Tick Object | Object | Perform Game logic on
Unit & & the individual units
Objects | Object | Object | themselves.

Manage | Manage

ment
System
(Data)

ment
System
(Data)

206

207

A-11141.2.7 Tick Physics Component

,,,,,,,,,,,,,,,,,,,,

(from Game Analysis - Use Case and Dynamic View)
(from Design: Tick)

Figure 98 : Tick Physics Component

A-1.1.1.4.1.2.7.1.1 Calculate Collision Reaction

Type: public UseCase
Package: Tick Physics Component

Upon a collision, calculate the physical reaction that occurs (i.e. bounce).

A-1.1.1.4.1.2.7.1.2 Detect Collisions

Type: public UseCase
Package: Tick Physics Component

This is an arbitrary decision but we are saying collsion detection functionality resides in
the physics engine. Many commercial physics engines offer this functionality, and I'm
just continuing that.

A-1.1.1.4.1.2.7.1.3 Tick Physics Component

Type: public UseCase
Package: Tick Physics Component

Design: Tick Physics Component (Component Sequence) Messages

T
(from Game Analysis - Usd Case and Dynamic View)

Figure 99 : Design: Tick Physics Component (Component Sequence)

System (Ticked

/ITick Physics Component

Physics Component Object & Object
Management System
(Data)

>

Name: Design: Tick Physics C (Component)

Author: Jeff Plummer
Version: 1.0

Created 11/3/2004 9:21:00 AM
Updated: 11/4/2004 4:41:52 PM

I/Request objects to operate gn
>

/IPerform Collision Detection |
/IPerform Collision Reaction

//Update Data

This diagram is specific to the simple
design used in thisthess.

7

Messag | From To Notes

Il |e Object | Object

D

1 | /[Tick | System | Physics | In this design the physics
Physics | (Ticked | Compo | resides in its own
Compo |) nent component and will be
nent "ticked" to tell the

physics system to operate
on a list of objects.

2 | /IReque | Physics | Object | Request list(s) of objects
st Compo | & that require physics
objects | nent Object | processing. Basically
to Manage | request only the objects
operate ment to perform collision
on System | detection and reaction on.

(Data)

3 | /[Perfor | Physics | Physics | Determine if objects

m Compo | Compo | collide

208

Collisio | nent nent
n
Detecti
on
/[Perfor | Physics | Physics | Determine the physical
m Compo | Compo | reaction that occurs due
Collisio | nent nent to the collision(s)
n
Reactio
n
//Updat | Physics | Object | Update object data based
eData | Compo | & on the physical reaction.
nent Object
Manage
ment
System

(Data)

209

APPENDIX B —
PROTOTYPE DESIGN

211
TABLE OF CONTENTS - APPENDIX B

SECTION NAME Page
g (0] (0] oL OO UPRTUPPRROPPRPPIN 218
ANGIYSIS VIBW ...ttt ettt et et e et e s te e steere e e teesaeeneenreenneenes 218
LOGICal ATCRITECTUIE ...t 218
ODBJECE INTEITACES ...ttt ettt e e nbe e nreas 219
GAMEODJECT ... et nres 219
AT20DJECT. ...ttt 220
FATODJECT ... bbbt 220
IGraphiCS2DODJECTc.eiiieitieiee et 220
IGraphiCS3DODJECEc.veciieciicie et 221

[0 To o= L AT SR 222
Programming UtilitieS LiDrary ... 222

)Y A (=]1 1 TP U PR ORI 223

AL SYSTBM. i 224

Al Component - IMplementation............ccooveeiieie e 224

Al EXPOrEd ClIASSESc.veveiviiiiiiieiieieiieie et 225

ROOT ... 225

Private Al System Implementationcccooevveieiiicie e 227
CALSYSIEIM. ..t e et esbeee s 227
CAIPIOCESSOIODJECT ...t 228
CAIVIBWPTOCESSO ...ttt bbb 229

Al Component - INEEIFACESocivviiiieiie e 231

212
Section Name Page

Al Interfaces Object System Can Use To Communicate With Al System.... 232

LAIPrOCESSOIODJECE ...ttt 232
LALSYSIEIM ..o s 232
LATVIBWPTOCESSON ...ttt 233

Al Interfaces The Object System Implementsccccoveveiininnieiesiennen, 234
IAICaPADIEODJECE ..o 234
LATODJECISYSIEM ...t 234
IAIPIOCESSADIEODJECT ... 235
LAISCENEMANAGETottt 236
FATVIBW ...ttt bbbt 236
ALZ2SYSTEIM. .. rne s 238
Al2 Component - IMplementation.............coovveiininieeee e 238
A2 EXPOITEA ClaSSES ... coveeueiiieeiiieiesiie ettt 239
ROOT ... 239
Private Al2 System Implementationc.ccoovvviiiieninn e 241
CAUZSYSIEIM ..ttt b e sene s 241
CAIZ2ProcesSOrODJECEccveivieiecie e 242
CAI2VIBWPIOCESSON ...ttt 243

Al2 Component - INEEITACEScoviieieieiese e 245

Al2 Interfaces Object System Can Use To Communicate With Al2 System 246
IAI2ProcesSOrODJECTccveeiiiecciece e 246

LATZSYSTEIM ..o 246

Section Name Page
TAIZVIEBWPIOCESSO ...ttt 247

Al2 Interfaces The Object System Implementsccccccevvvevviicieccecienneen, 248
(PAN PZLOF:To - 1o] (<10 o] 1< SRS 248
TAI20DJECESYSIEIM ... 248
IAI2ProcessableODnject ..o 249
LAIZ2SCENEMANAGET ..ottt 250
FATZVIBW ...ttt bbbt 250
Game ODJECT SYSTEM.....oiuiiiiieieeie e 252
Game Object Component - Implementation............ccoccevvereiiiie e, 252
Game Object Component EXported CIasSeSccovevevvereiiiesieeriesieseeseenns 252
ROOT ... 252
Private Game Object Component Implementationccoccoevvvviiiiciennenn 254
CDEMOCAMETA ...t 254
CDemoGameObhjeCtSYSIEM.......cccveveeecere e 255
CDEMOMAINVIBW.cviiiiiiieieie sttt 259

(OB 100101 @] o] =T ot SRR 259
CDemoODbjectSCENEMANAGETcceeiveeieirieiieeie e 265
CDeMOVIEWBASECIASS.ccveveieieiiecciiieeese e 267
CTriangleGameODJECT.........coviieierere e 273

Data SIUCTUIES........viiiieiicecieci s 275
AEMOPOINTZH ...t 275

AEMOPOINIST .ottt e e e e e e e, 276

Section Name Page
AEMORECT ...t 276

Game Object Component - INterfacescoevveveiieie s, 278
(L@ o =To ISy (=] 1 SRS 278
CompPoNent AtEACHINGScvereeieiiiiieeee e 279
GAME SYSTEIM ...ttt ettt e e b e e sb e e nbeesan e e nneesnneas 281
CDEeMOAPPIICALION.......icieciccie e 281
GraphiC 3D SYSIEMcuviiie et reeae e nne e 284
Graphics3DComponent - Implementation..............ocveeieneneneneneseeeee, 284
EXPOIEA CIASSESeivieiieiiieieiee et 285
ROOT ... 285

Private Graphics3D System Implementationc.ccccvevvvieiieeie e, 287
CGraphics3DProcessorODJECTcocuiviiriiieieiesese e, 287
CGraphiCS3DSYSIEIMouviiiiiieie et 288
CGraphiCS3DVIEWPIOCESSONvevveieeieeiiesieesieseesieesieseesseeseeeneeseeeneeanes 291
Graphics3DComMpPoNent - INTEITACESccoverireriiieiee e, 293

Interfaces the Object System can use to communicate with the Graphics3D

)] (=] . [P SUPRPPRPPROPI 294
IGraphics3DProcessOrODJECtccvviveiiee e 294
IGraphiCS3DSYSEM ...ttt 295
IGraphiCS3DVIEWPTOCESSOLccveiiieiiieiiieiie st 295

Interfaces The Object System Implements...........ccooveveiieiieve e, 297

IGraphiCS3DCAMENAeeveeeieciiecie ettt nne e 297

Section Name Page
IGraphics3DCapableObject.........ccooviiiiii 297
IGraphicsS3DODJECISYSIEMecviiieciecie e 298
IGraphics3DProcessableODbjectcovveeiieiieicceeee e, 298
IGraphicS3DSCENEMANAGETocvirieiiiiisiieiieeeie ettt 299
IGraphiCSIDVIBWeiiiiiiieiie e 300

GraphiCs 2D SYSIEMociiiiiececc e 302
Graphics Component - Implementationcccccvievieeieniene e, 302
EXPOITEA CIASSES ...ttt 303
ROOT ... 303

Private Graphics System Implementation...........ccccoceiveie i 305
CGraphicsProcessorODJECT........cvivviveiecieseere e 305
COraphiCSSYSEIM ...ttt 308
CGraphiCSVIBWPIOCESSONc.vviieeciiesieeie sttt 310
Graphics Component - INErfaces........cccevviieiiiie e 312

Interfaces Object System Can Use To Communicate With Graphics System313

IGraphiCSProCeSSOrODJECTc.eeiiiiieiieiieeie e 313
IGraPhiCSSYSIEM.....i i 313
Interfaces The Object System IMplements..........cccooveievierieeie s, 315
2D GraphiCSCAMENAccuveuieeeieiee ittt 315
12D GraphiCSODJECT.....cueeiieie ettt e 316
12DSpriteGraphiCSODJECTcveiviiiecicce e 316

IGraphiCSCAMEIA.....c.eeivieieeie ettt enne e 317

Section Name Page
IGraphicsCapableODhJect..........ooviiiiiiiii 317
IGraphicSODJeCtItErator.........coveiiiie i 317
IGraphiCSODJECISYSIEMvcuveciiece e 318
IGraphiCSSCENEMANAGETcvivieirieiieiesieeee e 318
IGIaPNICSVIBW ... 319
IGraphiCSVIBWIEIAtOrcveiveeciece e 320
IProcessableGraphiCSODJECT........ccovviieiiee e 321

UGHHEY INCIUAES ... s 323
(G830 1] | USSP 323

THEEIATON ... 334
VectorBasedlteratorTemplateClass..........cccvvvvevvereiiienvene e, 335

DYNAMIC VIBW ...ttt bbbttt b bbbt 337
INIHANIZE. ... 337
INItialize Al2 SYSEEMoiiieie et 337

INItIAlIZE Al SYSTEM ..o 340

Initialize Graphics 3D SYSEMccouiiiiiiiie e 343

Initialize Graphics SYSIEM.........coiviiiiiiii e 346

Initialize ODJECt SYStEM......ceoiiecice et 350

INitialize Game SYSTEM......ccooiiiiiieriee s 353

THCK bbbt 356
TICK Al SYSIEM ... 356

TICK A2 SYSEEIM ...t 362

Section Name Page
Tick Graphics 3D SYSIEM.....ccuiiiiiiiieiieee e e 367

TicK GraphiCs SYSEM.......cciiiiiiciece e 373

Tick Prototype Game SYSIEMccccovviieieiieie e 379

COMPONENT VIBW ...ttt bbbt bbbttt 380
AL SYSIEIM 2 et 380

Artificial INtEHIgENCE.ccveiice e, 380

AUTIO .o 380

GAME SYSTEIM ... 380

(C] o] o ok USSP 381

Graphics 3D SYSIEMocviiiiiice e e 381

INEIWOTK ... 381

Object & Object Management System (Data)ccccocervrereniieinerienen, 381

OGRE GraphiCs ENQINE........cccveiiiiiiieiesie e 381

PhySICS COMPONENTccuviieieieeiecie et sae e nrees 382

U SSBE INEE T ACE vttt e eeeeeeeneees 382

218

B-1.2 Prototype

B -1.2.1 Analysis View

This view shows a quick analysis of what the prototype is.

B-1211 Logical Architecture

This diagram shows the high level architecture of the prototype system that was built.

Name:
Author:
Version
Created:

Updated:

Prototype Logical Architecture
Jeff Plummer

1.0

10/18/2004 10:31:16 AM
11/5/2004 2:36:35 PM

Al System Al2System

(from Systems) (from Systems)

Game Object System

(from Systems)

Graphic 3D System Graphics 2D System

(from Systems) (from Systems)

Figure 100 : Prototype Logical Architecture

B-12111

219

Obiject Interfaces

This diagram shows a short list of data that will reside in the prototype "game" object,
and who will use that data.

Name: Required Object Interfaces
Author: Jeff Plummer
Version: 1.0
Created: 10/18/2004 4:41:45 PM
Updated: 11/5/2004 2:58:07 PM
«interface» «interface»
IGraphics2DObject IGraphics3DObject
+ gs2dGet2DObjectGraphicsResource() : String + gs3dGet3DObjectGraphicsResource() : String
+ gs2dGetOffsetinResource() : point2d + gs3dGet3DObjectLocation() : point3f
+ gs2dGet2DObjectLocation() : point2d + gs3dGet3DObjectOrientation() : point4f
AV3 <
N ,I
N 7
N ,
«realizg» «realize»
~ 7z
GameObject

- m_s3DObjectResource: String
- m_s2DObjectResource: String
- m_3fObjectPosition: point3f

- m_4fObjectOrientation: point4f

gealize» «realize»
. R

«interface»
IAIObject Al20bject

«interface»

+ aisGetObjectLocation() : point3f

+ ai2sGetObjectOrientation() : point4f

B-121111111

Type:

IGraphics3DObject.

Package:

Figure 101 : Required Object Interfaces

GameObject

public Class
Implements: Al20bject, IAIObject, IGraphics2DObiject,

Object Interfaces

This example class shows what data will exist in a game object in the prototype.

GameObject Attributes

Attribute

Type

Notes

m_s3DO0bject
Resource

private : | A string that says what 3D
String graphical resource should be

used to represent this object in
3D.

private : | A string that says what 2D

220

m_s2DObject | String graphical resource should be
Resource used to represent this object in
2D.

private : | The object's position in 3-Space.
m_3fObjectPo | point3f
sition

private : | The object's orientation
m_4fObjectOr | point4f represented as a quaternion.
ientation

B-121111112 Al20bject

Type: public abstract «interface» Interface
Package: Object Interfaces

This sample interface shows what type of data the Al2 engine will require from an Al2
object.

Al20bject Interfaces

Method Type Notes

public Get the object's orientation
ai2sGetObject | abstract: | represented as a quaternion.
Orientation () | point4f

B-1.21111113]AIObject

Type: public abstract «interface» Interface
Package: Obiject Interfaces

This sample interface shows what type of data the Al engine will require from an Al
object.

IA1Object Interfaces

Method Type Notes

public Get the object's position in 3-
aisGetObjectL | abstract: | Space.
ocation () point3f

B-1.2.1.1.1.1.1.1.4 |Graphics2DObject
Type: public abstract «interface» Interface

221
Package: Object Interfaces

This sample interface shows what type of data the 2D Graphics engine will require from
a 2D graphical object.

IGraphics2DObject Interfaces

Method Type Notes

public A string that says what 2D
gs2dGet2DODbj | abstract: | graphical resource should be
ectGraphicsRe | String used to represent this object in
source () 2D.

public Get the offset in the 2d image
gs2dGetOffset | abstract: | resource that respresents the
InResource () | point2d | sprite. Game logic in the game
object will actually use the
quaternion orientation and create
the sprite image offset.

public Get the position of the object in
gs2dGet2DObj | abstract: | 2 space
ectLocation () | point2d

B-1.2.1.11.1.1.15 IGraphics3DObject

Type: public abstract «interface» Interface
Package: Object Interfaces

This sample interface shows what type of data the 3D Graphics engine will require from
a 3D graphical object.

IGraphics3DODbject Interfaces

Method Type Notes

public Get A string that says what 3D
gs3dGet3DObj | abstract: | graphical resource should be
ectGraphicsRe | String used to represent this object in
source () 3D.

public Get the object's position in 3-
gs3dGet3DObj | abstract: | Space.
ectLocation () | point3f

public Get the object's orientation
gs3dGet3DObj | abstract: | represented as a quaternion.
ectOrientation | point4f

0

222

B -1.2.2 Logical View

This view shows the classes and structures involved in this prototype.

B-1221 Programming Utilities Library

This package contains many of the utility classes that were used in this project.

Name: Programming Utilities Library
Author: Jeff Plummer

Version: 1.0

Created: 6/18/2004 4:42:34 PM
Updated: 11/5/2004 3:31:20 PM

Logging Resource Management String

+ AutomaticGuardUnguard g + <anonymous> + CStdStr

+ Exception E + <anonymous> + NotSpace
+ ExceptionCodes g + BaseResource + NotSpace
+Log =] + CArchiveCapableResource + SSSHDR

g + CArchiveCapableResourceManager

=+ CFileSystemExplorer

g + CMemoryManagedObject

=N CZipFileExplorer
g + PriorityType

=] + ptr_greater

=+ ptr_less

5] + ResManager

+ SSToLower

+ SSTolLower

+ SSToUpper

+ SSToUpper

+ StdStringEqualsNoCaseA
+ StdStringEqualsNoCaseW
+ StdStringLessNoCaseA

+ StdStringLessNoCaseW

+ String

+ LoggingLevel
+ LogManager
+ LogMessageLevel

Singleton

+ Singleton

Figure 102 : Programming Utilities Library

223

B-1222 Systems

This package contains all the systems involved in the prototype.

Name: Systems
Author: Jeff Plummer
Verson: 1.0

Created: 6/18/2004 4:56:26 PM
Updated: 11/8/2004 3:44:14 PM

Ul System

architecture.

The simple design isNOT presented as THE DESIGN TO USE for
this architecture. Itis merely a simple implementation of this

Netw orking System

Graphics 2D System

+ Ul Component - Implementation
+ Ul Component - Interfaces

+ Network Component - Implementation
+ Network Component - Interfaces

+ Graphics Component - Implementation
+ Graphics Component - Interfaces

(from Not Implemented)

Audio System

(from Not Implemented)

Al System

+ Audio Component - Implementation
+ Audio Component - Interfaces

+ Al Component - Implementation
+ Al Component - Interfaces

Game Object System

+ Game Object Component - Implementation
+Game Object Component - Interfaces

+ Component Attachings

(from Not implemented)

Figure 103 : Systems

224

B-12212 Al System

This represents one artifical intelligence logical module. It's functionality will be very
simple, possibly adjust the object position in 3-space.

B-12211 Al Component - Implementation

This package contains an example implementation of the Al system. The implementation
IS not meant to show how to implement an Al engine, but rather show how an Al
component could be built using the simple design presented in this thesis.

Version 1.0 this architecture. It ismerely a simple implementation of this
Created 1/15/2004 8:51:45 PM architecture.

Name: Al Component - Example Implementation
Author: Jeff Plummer The simple design isNOT presented as THE DESIGN TO USE for
Updated: 11/8/2004 4:06:44 PM

Al Exported Classes Private Al System Implementation l
+ Root + CAISystem

% + CAlProcessorObject
E + CAlViewProcessor

Figure 104 : Al Component - Example Implementation

225

B-122211.1 Al Exported Classes

Version 1.0 this architecture. Itis merely a simple implementation of this
Created: 10/28/2004 3:39:15 PM architecture.

Name: Exported Classes
Author: Jeff Plummer The simple design isNOT presented as THE DESIGN TO USE for
Updated: 10/28/2004 3:44:19 PM

Singleton
Root

- m_pAISystemimplementation: *CAISystem
- m_pAlSysteminterface: *IAISystem

+ Root()
+ ~Root()
+ createAlSystem (IAIObjectSystem*) : IAISystem*

Figure 105 : Exported Classes

B-122211111 Root

Type: public Class
Extends: Singleton.
Package: Al Exported Classes

This class is the only exported class in the Artifical Intelligence component. It represents
the initial link to the Al system. From here the game system will connect to the Al
system, and request an interface to the Al system. Root is not part of the formal
architecture, it is an implementation connection point. In the real world it may be
necessary to communicate in more ways with the logical component (due to specific
library initializations, etc.). These "extra™ communications can be done through the root
object directly to the instance of the Al system, rather than through the architectural
specified interface.

Root Attributes

Attribute Type Notes

private : | A pointer to the implementation
m_pAlISystem | CAISyste | of the Al system. This should
Implementatio | m never be accessed publicly. It

n exists to handle those special
"real world" occasions where the
architectural interface doesn't
handle implementation specific
features.

private : | This is a pointer to the
m_pAlSystem | IAISyste | architectural interface to the Al
Interface m component. The creator of root
will receive a pointer to this
interface after calling
"CreateAlSystem".
Root Methods
Method Type Notes
Root () public: Constructor - Create an instance
of the Al system.
~Root () public Destructor - Destroy the instance
abstract: | of the Al System.
public: param: pObjectSystem [
createAlSyste | IAISyste | IAIObjectSystem™* - inout]
m m* A pointer to an object that

(1AIObjectSyst
em¥*)

implements the
IAIODbjectSystem interface. The
Al component will use this
interface to communicate to the
data section of the game system.

Connect the object system to the
Al system and return an
interface to Al system

@param pObjectSystem A
pointer to an object that
implements the
IAIObjectSystem interface. The
Al component will use this
interface to communicate to the
data section of the game system.

226

227

B-1222112 Private Al System Implementation

Name: Private Al System Implementation

Author: Jeff Plummer The simple design isNOT presented as THE DESIGN TO USE for
Version 1.0 this architecture. Itismerely a simple implementation of this
Created: 10/28/2004 3:39:28 PM architecture.

Updated: 11/3/2004 4:37:41 PM

CAlProcessorObject
CAISystem
- m_pP Object: *IAIPro Object
- m_bMovingLeft: bool - m_pObjectSystem: *IAIObjectSystem
- m_bMovingUp: bool
- m_bMovingBack bool + CAISystem()
+ ~CAISystem()
+ CAIProcessorObject(IAlIProcessableObject*) + connectObjectSystem(IAIObjectSystem*) : void
+ ~CAlProcessorObject() + tickAlSystem(float) : void
+ releaseAlProcessorObject() : void
+ processAlObject() : void

CAlView Processor

- m_pAlView: *IAIView

CAlViewProcessor(IAIView*)
~CANiewProcessor()
processView() : void
releaseAlViewProcessor() : void

+ o+t

Figure 106 : Private Al System Implementation

B-122211211 CAISystem

Type: public Class
Implements: 1AISystem.
Package: Private Al System Implementation

This class represents the implementation of the Al system. It implements the IAISystem

interface, and will be responsible for performing Al operations on the objects it receives
from the Object component.

CAISystem Attributes

Attribute Type Notes

private : | Pointer to the object system that
m_pObjectSys | IAIObjec | this Al component is attached to.
tem tSystem

CAISystem Methods

Method Type Notes

CAISystem () | public: Constructor

~CAISystem | public Destructor

228

0 abstract:

public param: objectSystem [
connectObject | abstract: | IAIObjectSystem™* - inout]
System void A pointer to an object that
(IAIObjectSyst implements the
em¥*) IAIODbjectSystem interface. The

Al component will use this
interface to communicate to the
data section of the game system.

IAISystem interface
implementation

tickAlSystem | public param: tDiff [float - in]
(float) abstract:
void IAISystem interface
implementation Causes the Al
component to iterate one cycle
of time and performs Al
processing on Al capable
objects.

B-1.22211.21.2 CAIlProcessorObiject

Type: public Class
Implements: 1AIProcessorObject.
Package: Private Al System Implementation

This is the Al Object observer that attaches to a game object. It uses the Al interface into
the game object to get access to the necessary data. The Al Processor object will do that
Al calculations treating the game object simply as a data access point.

CAIProcessorObject Attributes

Attribute Type Notes

private : | The Al Processable game object
m_pProcessabl | 1AIProce | this observer is attached to.
eObject ssableOb

ject

private : | Al variable used by the Al logic
m_bMovingLe | bool to determine the objects new
ft position.

private : | Al variable used by the Al logic
m_bMovingU | bool to determine the objects new
p position.

private : | Al variable used by the Al logic
m_bMovingBa | bool to determine the objects new
ck position.

CAIProcessorObject Methods

Method Type Notes
public: param: pObject [
CAIProcessor IAIProcessableObject* - inout]
Object
(IAIProcessabl Constructor
eObject*)
public Destructor
~CAIProcesso | abstract:
rObject ()
public The game object should call this
releaseAlProc | abstract: | function to delete the processor
essorObject () | void when the game object is deleted.
public: Perform Al Processing on the
processAlObje | void game object it is attached to. In
ct() this case just move the object
around the screen.

B-1.2.2.2.1.1.2.1.3 CAlViewProcessor

Type: public Class
Implements: 1AIViewProcessor.
Private Al System Implementation

Package:

This class attaches to a view and processes the view (i.e. uses the view interface to
request objects and works with the object processors attached to the objects).

CAIlViewProcessor Attributes

Attribute Type Notes

m_pAlView | private : | Pointer to the view being
IAlView | observed.

CAIlViewProcessor Methods

Method Type Notes

public: param: pView [IAIView™* -
CAlViewProc inout]
essor

229

(1AIView*) Constructor
public Destructor
~CAlViewPro | abstract:
cessor ()
processView | public: Perform Al Processing of this
0 void view. Request list of Al capable
objects, and call their observer
processors.
public Call during view destructor to
releaseAlView | abstract: | release this observer.
Processor () void

230

231

B-12212 Al Component - Interfaces

This package contains an interfaces for the Al system. The interfaces presented here are
for a specific design built on top of the proposed architecture.

Name Al Component - Public Interfaces

Author. Jeff Plummer The simple design isNOT presented as THE DESIGN TO USE for
Version: 1.0 this architecture. Itismerely a simple implementation of this
Created: 1/15/2004 8:43:52 PM e

Updated: 10/28/2004 3:40:18 PM

Al Interfaces The Object System Implements l

+ IAICapableObject

+ IAIObjectSystem
Al Interfaces Object System Can Use To Communicate With Al System | lectsy
+ AP Object
+ IAIProcessorObject + IAISceneManager
+ IAISystem + ANiew
+ IAlViewProcessor

Al Shared Data Types

- <anonymous>

- <anonymous>
- <anonymous>
+iRect

Figure 107 : Al Component - Public Interfaces

232

B-1222121 Al Interfaces Object System Can Use To Communicate With Al
System

This diagram shows the interfaces that are made available to the game system to use in
order to communicate with the Al System.

Name Interfaces Object System Can Use To Communicate With Al System
Author: Jeff Plummer

Updated: 11/5/2004 3:11:39 PM this architecture. Itismerely a simple implementation of this

Version 1.0
Created: 10/28/2004 3:17:13 PM The simple design isNOT presented as THE DESIGN TO USE for
architecture

«interface» «interface»
IAISystem IAIProcessorObject

+ «pure» connectObjectSystem(IAIObjectSystem) : void + «pure» releaseAlProcessorObject() : void
+ «pure» tickAlSystem(float) : void

«interface»
IAIViewProcessor

+ «pure» releaseANiewProcessor() : void

Figure 108 : Interfaces Object System Can Use To Communicate With Al System

B-122212111 IAIProcessorObject

Type: public abstract «interface» Interface
Package: Al Interfaces Object System Can Use To Communicate With Al System

This is the interface the game system can use to access the domain-specific processor that
is attached to a game object. This example is empty, showing that game objects don't
necessarily require domain-specific functionality access.

IAIProcessorObject Interfaces

Method Type Notes
«pure» Only required in C++ because
releaseAlProc | public there is no memory
essorObject () | abstract: | management. Call this during
void the game object destructor.

B-122212112 IAISystem

Type: public abstract «interface» Interface
Package: Al Interfaces Object System Can Use To Communicate With Al System

233

This interface is the architectural connection from the game system to the Al component.
One of the major goals of this architecture is to limit interaction from outside into the Al
component. So this interface will provide only the functionality to setup the Al system
and provide the Al system with the means to communicate back to the data. From that
point on most communication will originate from the Al system back to the data.

IAISystem Interfaces

Method Type Notes

«pure» param: objectSystem [
connectObject | public IAIODbjectSystem™ - inout]
System abstract:
(IAIObjectSyst | void Use this method to connect an
em¥*) Al Capable Object Management

System to the Al Component.

tickAlSystem | «pure» param: tDiff [float - in]

(float) public
abstract: | Use this method to Tick the Al
void system, so that it will request

and process Al objects.

B-1.2.2.21.2.1.1.3 IAlViewProcessor

Type: public abstract «interface» Interface
Package: Al Interfaces Object System Can Use To Communicate With Al System

This is the interface the game system can use to access the domain-specific view
processor that is attached to a view. This example is empty, showing that game views
don't necessarily require domain-specific functionality access.

IAIViewProcessor Interfaces

Method Type Notes
«pure» Only required in C++ because
releaseAlView | public there is no memory
Processor () abstract: | management. Call this during
void the game object destructor.

B-1222122 Al Interfaces The Object System Implements

Name Interfaces The Object System Implements

Author: Jeff Plummer The simple design is NOT presented as THE DESIGN TO USE for
Version: 1.0 this architecture. It ismerely a smple implementation of this
Created: 10/28/2004 3:16:15 PM IS

Updated: 11/3/2004 4:21:14 PM

«interface»
IAICapableObject
+ doNothing() : void

«interface» «interface»
IAIProcessableObject IAIObjectSystem

+ «pure» aisGetAlProcessorObject() : IAIProcessorObject* + «pure» aisGetAViews() : IANiewlterator*
+ «pure» aisAssig| bject(l Object”) : void
+ «pure» aisGetObjectPosition() : point3f

+ _«pure» aisSetObjectPosition(point3f&) : void

«interface» «interface»
IAIView IAISceneManager
+ «pure» ai t) () @ ANV + «pure» ai Objects() : IAIObj
+ «pure» g iewP iewPr ™) : void
+ «pure» g

Figure 109 : Interfaces The Object System Implements

B-122212211 IAICapableObject

Type: public abstract «interface» Interface
Package: Al Interfaces The Object System Implements

This class is required for C++ and dynamic type casting. It has no other uses.

IAlCapableObject Interfaces

Method Type Notes

doNothing () | public
abstract:
void

B-122212212 |IAIObjectSystem

Type: public abstract «interface» Interface
Package: Al Interfaces The Object System Implements

234

235

This interface is the architectural connection from the object system responsible for
managing objects capable of Al to the Al component. Using this interface the Al
component will request Al capable objects and perform the appropriate Al operations on
them.

IA10DbjectSystem Interfaces

Method Type Notes

«pure» Get an iterator (list) of active
aisGetAlView | public views to process.
s() abstract:

IAIViewlt

erator*

B-1.2221.2.2.1.3 IAIProcessableObject

Type: public abstract «interface» Interface
Extends: 1AlCapableObject.
Package: Al Interfaces The Object System Implements

Game objects that wish to be processable by this Al engine must implement this
interface. It allows the Al system to read/write certain data elements.

IAIProcessableObject Interfaces

Method Type Notes

«pure» Allows the Al engine to get the
aisGetAlProce | public Al observer object attached to
ssorObject () | abstract: | this game object.

IAIProce

ssorObje

ct*

«pure» param: procObj [
aisAssignAlPr | public IAlIProcessorObject* - inout]
ocessorObject | abstract:
(IAIProcessor | void Allows the Al engine to set the
Object*) Al observer to be attached to this

game object.

«pure» Position data read
aisGetObjectP | public
osition () abstract:
point3f

«pure» param: pos [point3f& - inout |
aisSetObjectP | public

osition
(point3f&)

abstract:
void

Position data write

B-122212214

IAISceneManager

Type: public abstract «interface» Interface
Package: Al Interfaces The Object System Implements

The scene manager provides the object list for the component to process.

IAlSceneMana

er Interfaces

Method Type Notes

«pure» Ask the view's scene manager
aisGetAlProce | public for a list of objects to process.
ssableObjects | abstract:
0 IAIObjec

tlterator*

236

B-122212215]AlView

Type: public abstract «interface» Interface
Package: Al Interfaces The Object System Implements

The game object system implements this interface to provide "views" into the data. A
view is just some context information and acess to a list of objects to process.

IAIView Interfaces

Method Type Notes

«pure» Get access to the attached
aisGetAlView | public domain-specific view observer
Processor () abstract: | that will process this view.

IAIViewP

rocessor

*

«pure» param: viewProc [
aisAssignAlVi | public IAIViewProcessor* - inout]
ewProcessor abstract:

(IAlViewProce | void Set the attached domain-specific
SSOr¥*) view observer that will process
this view.

«pure» Request access to the object list

aisGetSceneM

public

in this view.

anager ()

abstract:
I1AIScene
Manager
*

237

B-12222 Al2System

238

This represents one artifical intelligence logical module. It's functionality will be very
simple, possibly adjust the object's orientation in 3-space.

B-12221 Al2 Component - Implementation

Al2 Exported Classes

+ Root

Private Al2 System Implementation

g + CAI2System
E + CAI2ProcessorObject

g + CAI2ViewProcessor

Figure 110 : Al2 Component - Example Implementation

239

B-1222211 Al2 Exported Classes

Version 1.0 this architecture. Itis merely a simple implementation of this
Created 11/3/2004 8:47:35 PM architecture.

Name: Al2 Exported Classes
Author: Jeff Plummer The simple design isNOT presented as THE DESIGN TO USE for
Updated: 11/5/2004 3:31:53 PM

Singleton
Root

- m_pAl2Systeminterface: *IAI2System
- m_pAl2SystemImplementation: *CAI2System

+ Root()
+ ~Root()
+ createAl2System(IAI20bjectSystem*) : IAI2System*

Figure 111 : Al2 Exported Classes

B-122221111 Root

Type: public Class
Extends: Singleton.
Package: Al2 Exported Classes

This class is the only exported class in the Artifical Intelligence component. It represents
the initial link to the Al system. From here the game system will connect to the Al
system, and request an interface to the Al system. Root is not part of the formal
architecture, it is an implementation connection point. In the real world it may be
necessary to communicate in more ways with the logical component (due to specific
library initializations, etc.). These "extra” communications can be done through the root
object directly to the instance of the Al system, rather than through the architectural
specified interface.

Root Attributes

Attribute Type Notes

private : | This is a pointer to the
m_pAl2Syste | IAl2Syste | architectural interface to the Al
minterface m component. The creator of root
will receive a pointer to this
interface after calling

"Create AlSystem".

private : | A pointer to the implementation
m_pAl2Syste | CAI2Syst | of the Al system. This should
mimplementat | em never be accessed publicly. It
ion exists to handle those special

"real world" occasions where the
architectural interface doesn't
handle implementation specific
features.

Root Methods

Method Type Notes
Root () public: Constructor - Create an instance
of the Al system.
~Root () public Destructor - Destroy the instance
abstract: | of the Al System.
public: param: pObjectSystem [
createAl2Syst | IAI2Syste | IAI20bjectSystem™ - inout]
em m*

(IA120bjectSy
stem*)

Connect the object system to the
Al system and return an
interface to Al system

@param pObjectSystem A
pointer to an object that
implements the
IAIObjectSystem interface. The
Al component will use this
interface to communicate to the
data section of the game system.

240

B-1222212

B-122221211

Type:

241

Private Al2 System Implementation

Name: Private Al2 System Implementation
Author: Jeff Plummer

Version 1.0

Created 11/3/2004 8:51:13 PM

Updated: 11/3/2004 9:04:19 PM

IAl2ViewProcessor
CAl2View Processor

- m_pAl2View: *IAI2View

T

CAI2ViewProcessor(IAI2View*)
~CAI2ViewProcessor()
processView() : void
releaseAl2ViewProcessor() : void

-

this architecture. It ismerely a simple implementation of this

The simple design isNOT presented as THE DESIGN TO USE for
architecture.

IAI2ProcessorObject
CAIl2ProcessorObject

- m_pProcessableObject: *IAI2ProcessableObject

+ o+ o+ o+

CAI2ProcessorObject(IAl2ProcessableObject*)
~CAI2ProcessorObject()
releaseAl2ProcessorObject() : void
processAl20bject()

void

IAI2System
CAI2System

- m_pObjectSystem: *IAI20bjectSystem

+ o+ o+

CAI2System()

~CAI2System()
connectObjectSystem(IAl20bjectSystem*) : void
tickAl2System(float) : void

Figure 112 : Private Al2 System Implementation

Extends: 1AI12System.

Package:

CAI2System
public Class

Private Al2 System Implementation

This class represents the implementation of the Al system. It implements the IAISystem
interface, and will be responsible for performing Al operations on the objects it receives
from the Object component.

CAI2System Attributes

Attribute

Type Notes

m_pObjectSys
tem

private :
IAI20bje
ctSystem

Pointer to the object system that
this Al component is attached to.

CAI2System Methods

Method

Type Notes

CAI2System

public:

Constrcutor

Q0

~CAI2System | public Destructor

0 abstract:

public param: objectSystem [

connectObject | abstract: | IAI20bjectSystem™ - inout]

System void

(IA120bjectSy IAISystem interface

stem*) implementation Connect the Al
system to the object component
that contains of the Al objects to
be processed.
@param objectSystem A
pointer to an object that
implements the
IAIObjectSystem interface. The
Al component will use this
interface to communicate to the
data section of the game system.

public param: tDiff [float - in]
tickAl2System | abstract:
(float) void IAISystem interface

implementation Causes the Al
component to iterate one cycle
of time... This will be expanded
in the next design iteration of the
thesis.

B-122221212

Type:

Package:

CAIl2ProcessorObject

public Class
Extends: 1AI2ProcessorObject.
Private Al2 System Implementation

242

This is the Al Object observer that attaches to a game object. It uses the Al interface into
the game object to get access to the necessary data. The Al Processor object will do that

Al calculations treating the game object simply as a data access point.

CAI2ProcessorObject Attributes

Attribute Type Notes

private : | The Al Processable game object
m_pProcessabl | IAI2Proc | this observer is attached to.
eObject essableO

bject

CAIl2ProcessorObject Methods

Method Type Notes
public: param: pObject [
CAI2Processo IAI2ProcessableObject™ - inout]
rObject
(IA12Processa Construction/Destruction
bleObject*)
public Destructor
~CAI2Process | abstract:
orObject ()
public The game object should call this
releaseAl2Pro | abstract: | function to delete the processor
cessorObject () | void when the game object is deleted.
public: Perform Al Processing on the
processAl20bj | void game object it is attached to. In

ect ()

this case just rotate the object.

B-122221213

public Class
Extends: 1AI12ViewProcessor.
Private Al2 System Implementation

Type:

Package:

This class attaches to a view and processes the view (i.e. uses the view interface to
request objects and works with the object processors attached to the objects).

CAl2ViewProcessor

CAIl2ViewProcessor Attributes

Attribute Type Notes
m_pAl2View | private : | Pointer to the view being
IAI2View | observed.

CAIl2ViewProcessor Methods

Method Type Notes
public: param: pView [IAI2View* -

CAIl2ViewPro inout]

cessor

(1A12View™*) Construction/Destruction
public Destructor

~CAI2ViewPr | abstract:

ocessor ()

processView | public: Perform Al Processing of this

243

0 void view. Request list of Al capable
objects, and call their observer
processors.

public Call during view destructor to
releaseAl2Vie | abstract: | release this observer.
wProcessor () | void

244

B-12222

Al2 Component - Interfaces

Name: Al2 Component - Interfaces

Author: Jeff Plummer

Version 1.0

Created 11/3/2004 9:04:51 PM
Updated: 11/5/2004 3:32:21 PM

The simple design isNOT presented as THE DESIGN TO USE for
this architecture. Itismerely a simple implementation of this
architecture.

| Al2 Interfaces Object System Can Use To Communicate With Al2 System [

+ IAI2ProcessorObject
+ IAI2System
+ IAl2ViewProcessor

|AI2 Interfaces The Object System Implements l

+ IA2CapableObject

+ IAI2ObjectSystem

+ IAI2ProcessableObject
+ IAl2SceneManager
+IARView

Al2 Shared Data Types

+iRect

+ point2d

+ pointaf

+ point4f

+ simpleQuatemion

Figure 113 : Al2 Component - Interfaces

245

246

B-1222221 Al2 Interfaces Object System Can Use To Communicate With Al2
System

This diagram shows the interfaces that are made available to the game system to use in
order to communicate with the Al2 System.

Name: Al2 Interfaces Object System Can Use To Communicate With Al2 System

Updated: 11/5/2004 3:11:55 PM this architecture. Itismerely a simple implementation of this

Author: Jeff Plummer
Version 1.0
Created 11/3/2004 9:06:22 PM The simple design isNOT presented as THE DESIGN TO USE for
architecture.

«interface» «interface»
IAI2System IAI2ViewProcessor

+ «pure» connectObjectSystem(IAl20bjectSystent) : void + «pure» releaseAl2ViewProcessor() : void
+ «pure» tickAl2System(float) : void

«interface»
IAI2ProcessorObject

+ «pure» releaseAl2ProcessorObiject() : void

Figure 114 : Al2 Interfaces Object System Can Use To Communicate With Al2
System

B-122222111 IAI2ProcessorObject

Type: public abstract «interface» Interface
Package: Al2 Interfaces Object System Can Use To Communicate With Al2 System

This is the interface the game system can use to access the domain-specific processor that
is attached to a game object. This example is empty, showing that game objects don't
necessarily require domain-specific functionality access.

I1AI12ProcessorObject Interfaces

Method Type Notes

«pure» Only required in C++ because
releaseAl2Pro | public there is no memory management
cessorObject () | abstract:

void

B-122222112]AI2System

247

Type: public abstract «interface» Interface
Package: Al2 Interfaces Object System Can Use To Communicate With Al2 System

This interface is the architectural connection from the game system to the Al component.
One of the major goals of this architecture is to limit interaction from outside into the Al
component. So this interface will provide only the functionality to setup the Al system
and provide the Al system with the means to communicate back to the data. From that
point on most communication will originate from the Al system back to the data.

I1A12System Interfaces

Method Type Notes

«pure» param: objectSystem [
connectObject | public IAI120bjectSystem™* - inout]

System abstract:
(IA120bjectSy | void Use this method to connect an
stem*) Al Capable Object Management

System to the Al Component.

«pure» param: tDiff [float - in]
tickAl2System | public
(float) abstract: | Use this method to Tick the Al2
void system, so that it will request
and process Al2 objects.

B-1.2.2.2.2.2.1.1.3 IAI2ViewProcessor

Type: public abstract «interface» Interface
Package: Al2 Interfaces Object System Can Use To Communicate With Al2 System

This is the interface the game system can use to access the domain-specific view
processor that is attached to a view. This example is empty, showing that game views
don't necessarily require domain-specific functionality access.

IAlI2ViewProcessor Interfaces

Method Type Notes
«pure» Only required in C++ because
releaseAl2Vie | public there is no memory

wProcessor () | abstract: | management. Call this during
void the game object destructor.

248

B-1222222 Al2 Interfaces The Object System Implements

This diagram shows the interfaces the object system will implement in order to be usable
by the Al2 System.

Name AI2 Interfaces The Object System Implements

Author: Jeff Plummer

Verson: 1.0 .

Created: 11/4/2004 10:24:58 AM The simple design is NOT presented as THE DESIGN TO USE for

Updated: 11/5/2004 3:20:39 PM this architecture.. It is merely a simple implementation of this
architecture

«interface»
IAI20bjectSystem
+ «pure» ai2sGetAl2Views() : IAI2Viewlterator*

«interface»
IA12CapableObject
+ doNothing() : void

«interface»
IAI2View

+ «pure» ai2sGetAl2ViewProcessor() : IAI2ViewProcessor*
+ «pure» ai g ViewPro) : void
+ «pure» ai 40

«interface»
IAI2ProcessableObject

«interface»

+ «pure» ai : Object() : 1A Object* |AI2SceneManager
+ «pure» ai rObject(l Object*) : void
+ «pure» ai2sGetObjectOrientation() : point4f& + «pure» ai2sGetAl Objects() : IAI20

+ «pure» ai2sSetObjectOrientation(point4f&) : void

Figure 115 : Al2 Interfaces The Object System Implements

B-122222211 IAI2CapableObiject

Type: public abstract «interface» Interface
Package: Al2 Interfaces The Object System Implements

This class is required for C++ and dynamic type casting. It has no other uses.

IA12CapableObject Interfaces

Method Type Notes
doNothing () | public

abstract:

void

B-122222212 IAI20bjectSystem

Type: public abstract «interface» Interface
Package: Al2 Interfaces The Object System Implements

This interface is the architectural connection from the object system responsible for
managing objects capable of Al to the Al component. Using this interface the Al

249

component will request Al capable objects and perform the appropriate Al operations on
them.

IA120bjectSystem Interfaces

Method Type Notes

«pure» Get an iterator (list) of active
ai2sGetAl2Vie | public views to process.

ws () abstract:
IAI12View
Iterator*

B-1.2222221.3 IAI2ProcessableObject

Type: public abstract «interface» Interface
Extends: I1AI2CapableObiject.
Package: Al2 Interfaces The Object System Implements

Game objects that wish to be processable by this Al engine must implement this
interface. It allows the Al system to read/write certain data elements.

IAI2ProcessableObject Interfaces

Method Type Notes

«pure» Allows the Al engine to get the
ai2sGetAl2Pro | public Al observer object attached to
cessorObject () | abstract: | this game object.

IAI2Proc
essorObj
ect*

«pure» param: procObj [
ai2sAssignAl2 | public IAI2ProcessorObject™ - inout]
ProcessorObje | abstract:

ct void Allows the Al engine to set the
(1A12Processo Al observer to be attached to this
rObject*) game object.

«pure» Orientation data read
ai2sGetObject | public

Orientation () | abstract:
point4f&

«pure» param: pt [point4f& - inout]
ai2sSetObject | public
Orientation abstract: | Orientation data write
(point4f&) void

250

B-1.2.2.22.2214 IAI2SceneManager

Type: public abstract «interface» Interface
Package: Al2 Interfaces The Object System Implements

The scene manager provides the object list for the component to process.

IAl2SceneManager Interfaces

Method Type Notes

«pure» Ask the view's scene manager
ai2sGetAl2Pro | public for a list of objects to process.
cessableObject | abstract:
s() IAI20bje

ctlterator

*

B-122222215 IAI2View

Type: public abstract «interface» Interface
Package: AIl2 Interfaces The Object System Implements

The game object system implements this interface to provide "views" into the data. A
view is just some context information and acess to a list of objects to process.

IAI2View Interfaces

Method Type Notes

«pure» Get access to the attached
ai2sGetAl2Vie | public domain-specific view observer
wProcessor () | abstract: | that will process this view.

IAI12View

Processo

r*

«pure» param: viewProc [
ai2sAssignAl2 | public IA12ViewProcessor* - inout |
ViewProcessor | abstract:

(IAl12ViewProc | void Set the attached domain-specific
essor) view observer that will process
this view.

«pure» Request access to the object list
ai2sGetScene | public in this view.

Manager () abstract:

IA12Scen
eManage
r*

251

252

B-12232 Game Object System

The Game Object Logical Module will be responsible for managing the game objects. It
will provide "views" (or object lists and their contexts) to the various domain-specific
modules that are attached.

It could potentially provide object culling etc to make sure each view contains only
relavant objects, but for this simple prototype that will not be done.

B-12231 Game Object Component - Implementation

B-1222311 Game Object Component Exported Classes

Name: Game Object Component Exported Classes
Author: Jeff Plummer

Version: 1.0

Created: 11/4/2004 11:08:39 AM

Updated: 11/8/2004 3:41:25 PM

Singleton
Root

m_pObjectSystemImplementation: *CDemoGameObjectSystem
m_pObjectSystemInterface: *IObjectSystem

+ Root()
+ ~Root()
+ createObjectSystem() : IObjectSystem*

Figure 116 : Game Object Component Exported Classes

B-122231111 Root

Type: public Class
Extends: Singleton.
Package: Game Object Component Exported Classes

This class is the only exported class in the Object component. It represents the initial link
to the Object system. From here the game system will connect to the Object system, and
request an interface to the Object system. Root is not part of the formal architecture, it is
an implementation connection point. In the real world it may be necessary to
communicate in more ways with the logical component (due to specific library

253
initializations, etc.). These "extra" communications can be done through the root object
directly to the instance of the Object system, rather than through the architectural
specified interface.

Root Attributes

Attribute Type Notes

private :

m_pObjectSys | CDemoG
temImplement | ameObje
ation ctSystem

private :
m_pObjectSys | IObjectS
teminterface ystem

Root Methods
Method Type Notes
Root () public: Construction/Destruction
~Root () public
abstract:
public:

createObjectS | IObjectS
ystem () ystem*

B-12223.12 Private Game Object Component Implementation

Figure 117 : Private Game Object Component Implementation

B-1.2223.1.21.1 CDemoCamera

Type: public Class
Implements: 12DGraphicsCamera, IGraphics3DCamera.
Package: Private Game Object Component Implementation

CDemoCamera Attributes

Attribute Type Notes
private :
m_ptCameraL | demoPoi
ocation nt3f
private :
m_ptCameral. | demoPoi
00kALt nt3f

CDemoCamera Methods

Method Type Notes

public: Construction/Destruction
CDemoCamer
a()

254

public
~CDemoCame | abstract:
ra ()
public: param: loc [demoPoint3f& -
setCameraLoc | void inout]
ation
(demoPoint3f Setters
&)
public: param: lookAt [demoPoint3f& -
setCameralLoo | void inout]
kAt
(demoPoint3f
&)
public: Getters
getCameraLoc | demoPoi
ation () nt3f&
public:
getCameraLoo | demoPoi
kAt () nt3f&
public Component
gsGet2DCame | abstract: | Interfaces////I111111HHI
raLocation () | Graphics | 12DGraphicsCamera
Compone
nt::point
2f&
public IGraphics3DCamera
gs3dGet3DCa | abstract:
meraLocation | Graphics
0 3DComp
onent::po
int3f&
public
gs3dGet3DCa | abstract:
meraLookAt () | Graphics
3DComp
onent::po
int3f&

B-122231212

Type:

CDemoGameObijectSystem

public Class
Extends: 10bjectSystem. Implements: 1A120bjectSystem, IAlObjectSystem,

255

256
IGraphics3DObjectSystem, 1GraphicsObjectSystem, 10bjectSystem,

IUserInputObjectSystem.
Package: Private Game Object Component Implementation

CDemoGameObjectSystem Attributes

Attribute Type Notes

private :
m_pMainObje | CDemoO
ctSceneManag | bjectScen
er eManage
r

private :
m_pMainView | CDemoM
ainView

private :
m_pDemoVie | std::vect
ws or<CDe
moViewB
aseClass
*>

private :
m_pMainCam | CDemoC
era amera

private :
m_plteratorGr | VectorBa
aphicsViews sedlterat
orTempla
teClass<
Graphics
Compone
nt::1Grap
hicsView
*>

private :
m_plteratorGr | VectorBa
aphics3DView | sedlterat
S orTempla
teClass<
Graphics
3DComp
onent::|
Graphics
3DView*

>

m_plteratorAl
Views

private :

VectorBa
sedlterat
orTempla
teClass<
AlCompo
nent::1Al
View*>

m_plteratorAl
2Views

private :
VectorBa
sedlterat
orTempla
teClass<
Al2Comp
onent::1A
12View*
>

CDemoGameObjectSystem Methods

Method Type Notes

public: Construction/Destruction
CDemoGame
ObjectSystem
0

public
~CDemoGame | abstract:
ObjectSystem
0

public:
initializeObjec | void
tScene ()

public param: tDiff [float - in]
obTickObjectS | abstract:
ystem (float) void

public IGraphicsObjectSystemInterface
gsGetGraphics | abstract: | Overridden Functions
Views () Graphics I

Compone

nt::1Grap

hicsView

Iterator*

public IGraphics3DObjectSystemInterf
gs3dGetGraph | abstract: | ace Overridden Functions

257

icsViews ()

Graphics
3DComp
onent::|
Graphics
3DViewlt
erator*

I

uisGetUserlnp
utViews ()

public
abstract:
Userlnpu
tCompon
ent::1Use
rinputVie
wlterator

*

IUserInputObjectSystemInterfac
e Overridden Functions
1

aisGetAlView
s()

public
abstract:
AlCompo
nent::1Al
Viewlter
ator*

IAlObjectSysteminterface
Overridden Functions
I

uisGetMouseL
isteners ()

public
abstract:
Userinpu
tCompon
ent::1Use
rinputMo
useListen
erlterato
r*

ai2sGetAl2Vie
ws ()

public
abstract:
Al2Comp
onent::l1A
12Viewlte
rator*

IA120bjectSystemInterface
Overridden Functions
1l

uisGetKeyboar
dListeners ()

public
abstract:
Userlnpu
tCompon
ent::1Use
rinputkKe
yboardLi
stenerlter
ator*

258

B-1.2.2.23.1.2.1.3 CDemoMainView

Type: public Class
Extends: CDemoViewBaseClass.

Package: Private Game Object Component Implementation
CDemoMainView Methods
Method Type Notes

public: Construction/Destruction
CDemoMainV
iew ()

public
~CDemoMain | abstract:
View ()

B-1.22231.2.14 CDemoObject

Type: public abstract Class

Implements: 12DGraphicsObject, 12DSpriteGraphicsObject,
IA12ProcessableObject, IAIProcessableObject, IAudioObject,
IGraphics3DProcessableObject, IProcessableGraphicsObject.
Package: Private Game Object Component Implementation

CDemoObject Attributes

Attribute Type Notes

protected
m_pGraphicsR | :
esourceString | std::vect
Vector or<std::s
tring*>

private :
m_iGraphicsPr | Graphics
ocessorObject | Compone
nt::1Grap
hicsProc
essorObj
ect

protected

259

m_pGraphics3

DResourceStri | std::vect
ngVector or<std::s
tring*>
private :
m_iGraphicsR | Graphics
esources Compone
nt::1Strin
glterator
protected
m_ObjectPosit | :
ion demoPoi
nt3f
protected
m_QObjectOrie | :
ntation demoSim
pleQuate
rnion
protected
m_ImageOffse | :
tInResource demoPoi
nt2i
protected
m_CurrentOff | :
setinResource | demoPoi
nt2i
protected
m_nlmageHei | :
ght int
protected
m_nlmageWid | :
th int
private :
m_iGraphics3 | Graphics
DProcessorOb | 3DComp
ject onent::|
Graphics
3DProce
ssorObje
ct
private :
m_iGraphics3 | Graphics
DResources 3DComp
onent::IS

tringltera

260

tor

m_iAlProcess
orObject

private :
AlCompo
nent::1Al
Processo
rObject

m_iAl2Proces
sorObject

private :
Al2Comp
onent::1A
I2Proces
sorObjec
t

CDemoObject Methods

Method Type Notes
CDemoObiject | public: Construction/Destruction
0
public
~CDemoObjec | abstract:
tQ
tickObject «pure» param: tDiff [float - in]
(float) public
abstract:
void
public: param: resName [std::string& -
setDemoObjec | void inout]
tGraphics2DR
esourceName
(std::string&)
public IGraphicsObject
gsGetGraphics | abstract:
Resources () Graphics 1
Compone
nt::1Strin
glterator
public: param: w [int-in]
setDemoObjec | void param: h[int-in]
tGraphics2DR
esourceDimen
sions (int, int)
public
gsGetGraphics | abstract:

261

ProcessorObje | Graphics
ct() Compone

nt::1Grap

hicsProc

essorObj

ect*

public: param: res3DName [
setDemoObjec | void std::string& - inout |
tGraphics3DR
esourceName
(std::string&)

public param: procObj [
gsAssignGrap | abstract: | GraphicsComponent::IGraphicsP
hicsProcessor | void rocessorObject™ - inout]
Object
(GraphicsCom
ponent::1Grap
hicsProcessor
Object*)

public: param: p [demoPoint3f& - inout
setDemoObjec | void]
tPosition
(demoPoint3f
&)

public
gsGetGraphicl | abstract:
nterfacesimple | unsigned
mented () int

public
gsGetResource | abstract:
s() std::vect

or<std::s

tring*>*

public 12DSpriteGraphicsObject
gsCurrentimag | abstract:
eOffsetinReso | Graphics 1
urce () Compone

nt::point

20&

public 12DGraphicsObject
gsGetWorldPo | abstract: I
sition () Graphics

Compone

nt::point

2f&

262

public
gsGetlmageOf | abstract:
fsetinResource | Graphics
0 Compone

nt::point

2d&

public
gsGetlmageHe | abstract:
ight () int

public
gsGetlmageWi | abstract:
dth () int

public IGraphics3DObject
gs3dGetGraph | abstract:
ics3DProcesso | Graphics I
rObject () 3DComp

onent::|

Graphics

3DProce

ssorObje

ct*

public param: procObj [
gs3dAssignGr | abstract: | Graphics3DComponent::1Graphi
aphics3DProce | void cs3DProcessorObject* - inout]
ssorObject
(Graphics3DC
omponent::IGr
aphics3DProc
essorObject*)

public
gs3dGetGraph | abstract:
ic3DInterfaces | unsigned
Implemented | int
0

public
gs3dGetGraph | abstract:
ics3DResource | Graphics
s() 3DComp

onent::IS

tringltera

tor*

public
gs3dGet3DObj | abstract:
ectLocation () | Graphics

3DComp

263

onent::po
int3f&

gs3dGet3DObj
ectOrientation
AsQuaternion

0

public
abstract:
Graphics
3DComp
onent::po
int4f&

aisGetAlProce
ssorObject ()

public
abstract:
AlCompo
nent:: 1Al
Processo
rObject*

IAlIProcessableObject
1

public

param: procObj [

aisAssignAlPr | abstract: | AlComponent::1AlIProcessorObj
ocessorObject | void ect* - inout]
(AlComponent
::1AIProcessor
Object*)

public
aisGetObjectP | abstract:
osition () AlCompo

nent::poi

nt3f

public param: pos [
aisSetObjectP | abstract: | AlComponent::point3f& - inout
osition void]
(AlComponent
::point3f&)

public IAI2ProcessableObject
ai2sGetAl2Pro | abstract:
cessorObject () | Al2Comp I

onent::1A

I12Proces

sorObjec

t*

public param: procObj [
ai2sAssignAl2 | abstract: | Al2Component::1AI2ProcessorO
ProcessorObje | void bject* - inout]
ct

(AlI2Compone
nt::1AlI2Proces
sorObject*)

public

264

ai2sGetObject | abstract:
Orientation () | AlI2Comp
onent::po
int4f&
public param: pt [
ai2sSetObject | abstract: | Al2Component::point4f& - inout
Orientation void]

(AlI2Compone
nt::point4f&)

B-122231215

Type:

CDemoObjectSceneManager

public Class
Implements: 1AI2SceneManager, IAISceneManager,

IGraphics3DSceneManager, IGraphicsSceneManager.

Package:

Private Game Object Component Implementation

CDemoObjectSceneManager Attributes

Attribute

Type

Notes

m_vManaged
Objects

protected

std::vect
or<CDe
moQObject
x>

m_plteratorGr
aphics3DObje
cts

private :
VectorBa
sedlterat
orTempla
teClass<
Graphics
3DComp
onent::|
Graphics
3DProce
ssableOb
ject*>

m_plteratorGr
aphicsObjects

private :

VectorBa
sedlterat
orTempla
teClass<

265

Graphics
Compone
nt::IProc
essableG
raphicsO
bject*>

m_plteratorAl
Objects

private :

VectorBa
sedlterat
orTempla
teClass<
AlCompo
nent::1Al
Processa

bleObject
*>

m_plteratorAl
20bjects

private :
VectorBa
sedlterat
orTempla
teClass<
Al2Comp
onent:: 1A
I12Proces
sableObj
ect*>

CDemoObjectSceneManager Methods

Method Type Notes
public: Construction/Destruction
CDemoObiject
SceneManager
0
public
~CDemoObjec | abstract:
tSceneManage
rQ
public
manageObject | abstract:
s () void
insertObject public: param: obj [CDemoObject* -
(CDemoObiject | void inout]
*
)
public: param: fdiff [float - in]

266

267

obTickObjectS | void
ceneManager
(float)

public
gs3dGetVisibl | abstract:
eGraphics3DO | Graphics
bjects () 3DComp
onent::|
Graphics
3DObject
Iterator™
public IAlSceneManager
aisGetAlProce | abstract:
ssableObjects | AICompo
0 nent::1Al
Objectlte
rator*
public IGraphicsSceneManager
gsGetGraphics | abstract:
Obijects () Graphics
Compone
nt::1Grap
hicsObje
ctlterator
*
public IAl2SceneManager
ai2sGetAl2Pro | abstract:
cessableObject | Al2Comp
s() onent::1A
120bjectl
terator*

B-1.22231216 CDemoViewBaseClass
Type: public Class
Implements: 1AI2View, IAIView, IGraphics3DView, IGraphicsView,
IUserInputView.
Package: Private Game Object Component Implementation

CDemoViewBaseClass Attributes
| Attribute | Type | Notes

m_pDemoObj
ectSceneMana
ger

private :
CDemoO
bjectScen
eManage
r

m_pDemoCa
mera

private :
CDemoC
amera

m_pViewProc
essor

private :
Graphics
Compone
nt::1Grap
hicsView
Processo
r

m_pView3DPr
ocessor

private :

Graphics
3DComp
onent::|

Graphics
3DViewP
rocessor

m_pAlViewPr
ocessor

private :
AlCompo
nent:: 1Al
ViewPro
cessor

m_pAl2ViewP
rocessor

private :
Al2Comp
onent::l1A
12ViewPr
ocessor

CDemoViewBaseClass Methods

Method Type Notes
public: Construction/Destruction
CDemoViewB
aseClass ()
public
~CDemoView | abstract:
BaseClass ()
public: Gets/Sets
getObjectScen | CDemoO
eManager () bjectScen

268

eManage

r*

public: param: pMgr [
setObjectScen | void CDemoObjectSceneManager* -
eManager inout]
(CDemoObject
SceneManager
*)

public:
getDemoCame | CDemoC
ra() amera*

public GraphicsComponent::1Graphics
gsGetViewRec | abstract: | View
t() Graphics

Compone

nt::iRect

*

public
gsGetSceneMa | abstract:
nager () Graphics

Compone

nt::1Grap

hicsScen

eManage

r*

public: param: pCamera [
setDemoCame | void CDemoCamera* - inout]
ra
(CDemoCame
ra*)

public Graphics/!HITTTTTTTTTTTHHTTTHTTTTTTTITTITTT
gsGetGraphics | abstract: | /1111111
ViewProcessor | Graphics | GraphicsComponent::IGraphics
0 Compone | View

nt::1Grap

hicsView

Processo

r*

public
gsGetSubView | abstract:
s() Graphics

Compone

nt::1Grap

hicsView

Iterator*

269

public param: viewProc [
gsAssignGrap | abstract: | GraphicsComponent::1Graphics
hicsViewProce | void ViewProcessor* - inout]
ssor
(GraphicsCom
ponent::1Grap
hicsViewProce
SS0r*)

public
gsGetEnabledl | abstract:
nterfaceFlagsF | unsigned
orView () int

public
gsGetSceneCa | abstract:
mera () Graphics

Compone

nt::1Grap

hicsCam

era*
onKeyPressed | public param: keyEvent [
(UserinputCo | abstract: | UserlnputComponent::1UserInpu
mponent::1Use | void tKeyEvent& - inout]
rinputkeyEven
t&) IUserlInput::1UserInputKeyboard

Listener

public param: event [
onMouseMove | abstract: | UserlnputComponent::1UserInpu
(UserinputCo | void tMouseEvent& - inout]
mponent::1Use
rinputMouseE IUserInput::1UserInputMouseL.is
vent&) tener

public param: event [
onMouseLeftC | abstract: | UserlnputComponent::IUserlnpu
licked void tMouseEvent& - inout]
(UserinputCo
mponent::1Use
rinputMouseE
vent&)

public Graphics3D/TTTTTTTHTHTTTHTIITIIIITITT
gs3dGetGraph | abstract: | /111
ics3DViewPro | Graphics | Graphics3DComponent::1Graphi
cessor () 3DComp | cs3DView

onent::|

Graphics

3DViewP

270

rocessor
*
public param: event [
onMouseRight | abstract: | UserlnputComponent::IUserlnpu
Clicked void tMouseEvent& - inout]
(UserinputCo
mponent::1Use
rinputMouseE
vent&)
public param: viewProc [
gs3dAssignGr | abstract: | Graphics3DComponent::1Graphi
aphics3DView | void cs3DViewProcessor™ - inout]
Processor
(Graphics3DC
omponent::IGr
aphics3DView
Processor*)
public
gs3dGet3DSce | abstract:
neCamera () Graphics
3DComp
onent::|
Graphics
3DCame
ra*
public
gs3dGetView | abstract:
Rect () Graphics
3DComp
onent::iR
ect*
public
gs3dGetScene | abstract:
Manager () Graphics
3DComp
onent::|
Graphics
3DScene
Manager
*
public
gs3dGetSubVi | abstract:
ews () Graphics
3DComp

onent::l

271

Graphics
3DViewlt
erator*

gs3dGetEnabl
edInterfaceFla
gsForView ()

public
abstract:
unsigned
int

uisGetUIView
Processor ()

public
abstract:
Userinpu
tCompon
ent::1Use
rinputVie
wProcess
or*

UserInput//[HTTHTTTHTHTHTTTHTTTTTTTTTT
i
Userlnput::IUserlnputView

uisAssignUIVi
ewProcessor
(UserinputCo
mponent::1Use
rinputViewPro
Cessor*)

public
abstract:
void

param: viewProc [
UserlnputComponent::IUserlnpu
tViewProcessor* - inout]

uisGetUISubV
iews ()

public
abstract:
Userlnpu
tCompon
ent::lUse
rinputVie
wlterator

*

uisGetUIView
Rect ()

public
abstract:
Userlnpu
tCompon
ent::UIR
ect*

uisGetUIScene
Manager ()

public
abstract:
Userinpu
tCompon
ent::1Use
rinputSce
neManag
er*

public

AT

272

aisGetAlView | abstract: | / AlComponent::IAIView
Processor () AlCompo

nent::1Al

ViewPro

cessor*

public param: viewProc [
aisAssignAlVi | abstract: | AlComponent::lIAIViewProcess
ewProcessor void or* - inout]
(AlComponent
:1AIViewProc
essor¥)

public
aisGetSceneM | abstract:
anager () AlCompo

nent::1Al

SceneMa

nager*

public Al2Component::IAI2View
ai2sGetAl2Vie | abstract:
wProcessor () | Al2Comp

onent:: 1A

12ViewPr

ocessor*

public param: viewProc [
ai2sAssignAl2 | abstract: | Al2Component::1AI2ViewProce
ViewProcessor | void ssor* - inout]
(Al2Compone
nt::1AI2ViewP
rocessor®)

public
ai2sGetScene | abstract:
Manager () Al2Comp

onent::1A

12Scene

Manager

*

B-122231217

Type: public Class
Extends: CDemoObject. Implements: 12DGraphicsObiject,

CTriangleGameObject

12DSpriteGraphicsObject.

Package: Private Game Object Component Implementation

273

274

CTriangleGameObject Attributes

Attribute Type Notes
m_idegRotate | private :
int

CTriangleGameObject Methods

Method Type Notes
public: Construction/Destruction
CTriangleGam
eObject ()
public
~CTriangleGa | abstract:
meObject ()
tickObject public param: tDiff [float - in]
(float) abstract:

void

B-12223122

Data Structures

«struct»
demoPoint2i

«struct»
demoPoint3f

x: int
y: int

demoPoint2i()
demoPoint2i(int, int)
operator=(demoPoint2i&) : demoPoint2i&

+

x: float
y: float
z: float

+

demoPoint3f()
operator=(demoPoint3f&) : demoPoint3f&

+botRig +topLeft

«struct»
demoRect

+
+

topLeft: demoPoint2i
botRight: demoPoint2i

+ operator=(demoRect&) : demoRect&

Figure 118 : Game Object System - Data Structures

B-122231221 demoPoint2i
Type: public «struct» Class
Package: Data Structures
demoPoint2i Attributes
Attribute Type Notes
X public :
int
y public :
int
demoPoint2i Methods
Method Type Notes
demoPoint2i | public:
0
demoPoint2i | public: param: X1 [int-in]
(int, int) param: yl [int-in]

275

operator=
(demoPoint2i
&)

public:
demoPoi
nt2i&

param: pt [demoPoint2i& -
inout]

B-122231222

Type:
Package:

demoPoint3f Attributes

demoPoint3f

public «struct» Class
Data Structures

Attribute Type Notes
X public :

float
y public :

float
z public :

float
demoPoint3f Methods
Method Type Notes
demoPoint3f | public:
0
operator= public: param: pt [demoPoint3f& -
(demoPoint3f | demoPoi | inout]
&) nt3f&

B-122231223

Type:
Package:

demoRect Attributes

demoRect

public «struct» Class
Data Structures

Attribute Type Notes
topLeft public :

demoPoi

nt2i
botRight public :

276

demoPoi
nt2i
demoRect Methods
Method Type Notes
operator= public: param: r [demoRect& - inout]
(demoRect&) | demoRec
t&

277

278

B-12232 Game Object Component - Interfaces

Name: Game Object Component - Interfaces
Author: Jeff Plummer

Version: 1.0

Created: 10/19/2004 5:08:08 PM

Updated: 11/8/2004 3:42:16 PM

«interface»
I0bjectSystem

+ «pure» obTickObjectSystem(float) : void

Figure 119 : Game Object Component - Interfaces

B-1.22232111 IObjectSystem

Type: public abstract «interface» Interface
Implements: 1GraphicsObjectSystem, 1UserInputObjectSystem.
Package: Game Object Component - Interfaces

10bjectSystem Interfaces

Method Type Notes

«pure» param: tDiff [float - in]
obTickObjectS | public
ystem (float) abstract:
void

279

B-12233 Component Attachings

This class diagram shows how the object system implements the necessary interfaces to
interoperate with the Al System.

Figure 120 : Game Object System - Al Interface Implementations

This class diagram shows how the object system implements the necessary interfaces to
interoperate with the Al2 System.

Figure 121 : Game Object System - Al2 Interface Implementations

This class diagram shows how the object system implements the necessary interfaces to
interoperate with the 2D graphics System.

280

Figure 122 : Game Object System - Graphic Interface Implementations

This class diagram shows how the object system implements the necessary interfaces to
interoperate with the Graphics3D System.

Figure 123 : Game Object System - Graphic3D Interface Implementations

B-12242 Game System

Name: Game System

Author: Jeff Plummer
Version: 1.0

Created: 11/8/2004 9:18:07 AM
Updated: 11/8/2004 9:19:55 AM

281

The simple design isNOT presented as THE DESIGN TO USE for
this architecture. Itismerely a simple implementation of this
architecture.

CDemoApplication

- m_hinstance: HINSTANCE

- m_plObjectSystem: *ObjectComponent::IObjectSystem

- m_plGraphicsSystem: *GraphicsComponent::IGraphicsSystem

- m_plGraphics3DSystem: *Graphics3DComponent::IGraphics3DSystem
- m_plUserinputSystem: *UserinputComponent::IUserinputSystem

- m_plINetworkSystem: *NetworkComponent::INetworkSystem

- m_plAudioSystem: *AudioComponent::IAudioSystem

- m_plAISystem: *AlComponent::IAISystem

- m_plAI2System: *Al2Component::IAI2System

~CDemoApplication()
Initialize() : void
StartLooping() : void

+ o+ o+ o+

CDemoApplication(HINSTANCE)

Figure 124 : Game System

B-122241111 CDemoApplication

Type: public Class
Package: Game System

This class represents the master game system that connects and ticks the various

components.

CDemoApplication Attributes

Attribute Type Notes

m_hlnstance | private :
HINSTA
NCE

private :
m_plObjectSy | ObjectCo
stem mponent:
:10bjectS
ystem

private :

m_plGraphics | Graphics
System Compone
nt::1Grap

hicsSyste
m

m_plGraphics
3DSystem

private :
Graphics
3DComp
onent::|
Graphics
3DSyste
m

m_plUserlnpu
tSystem

private :
Userlnpu
tCompon
ent::1Use
rinputSys
tem

m_pINetwork
System

private :
Network
Compone
nt::INetw
orkSyste
m

m_plAudioSys
tem

private :

AudioCo
mponent:
:lAudioS
ystem

m_plAISyste
m

private :
AlCompo
nent::1Al
System

m_plAI2Syste
m

private :

Al2Comp
onent::1A
I2System

CDemoApplication Methods

Method Type Notes
public: param: instance [HINSTANCE
CDemoApplic -in]
ation
(HINSTANCE) Construction/Destruction
public
~CDemoAppli | abstract:

cation ()

282

Initialize () public: Create and connect the necessary
void components.

StartLooping | public: Tick each component in a loop.

0 void

283

B-12252 Graphic 3D System

284

This represents one graphics 3D logical module. It's functionality will draw objects in 3-

Space using an object defined resource.

B-12251 Graphics3DComponent - Implementation

Name: Graphics3DComponent - Implementation
Author: Jeff Plummer

Version: 1.0

Created 8/18/2004 3:54:59 PM

Updated: 11/4/2004 3:44:04 PM

I Private Graphics3D System Implementation [

E + CGraphics3DProcessorObject
E + CGraphics3DSystem

E + CGraphics3DViewProcessor

Exported Classes

The simple design isNOT presented as THE DESIGN TO USE for
this architecture. Itismerely a simple implementation of this
architecture.

Figure 125 : Graphics3DComponent - Implementation

285

B-1222511 Exported Classes

Version: 1.0 i this architecture. Itismerely a simple implementation of this
Created 8/18/2004 5:09:01 PM architecture.

Name Exported Classes
Author: Jeff Plummer The simple design isNOT presented as THE DESIGN TO USE for
Updated: 11/4/2004 3:36:30 PM

Singleton
Root

- m_pGraphics3DSystemImplementation: *CGraphics3DSystem
- m_pGraphics3DSystemInterface: *IGraphics3DSystem

Root(std::string&)

~Root()

createGraphics3DSystem (IGraphics3DObjectSystem*, int, int, int, bool) : IGraphics3DSystem*
gsGetHWND() : HWND

+ o+ o+ o+

Figure 126 : Exported Classes

B-122251111 Root

Type: public Class
Extends: Singleton.
Package: Exported Classes

This class is the only exported class in the Graphics 3D component. It represents the
initial link to the Graphics3D system. From here the game system will connect to the
Graphics3D system, and request an interface to the Graphics3D system. Root is not part
of the formal architecture, it is an implementation connection point. In the real world it
may be necessary to communicate in more ways with the logical component (due to
specific library initializations, etc.). These “extra” communications can be done through
the root object directly to the instance of the Graphics3D system, rather than through the
architectural specified interface.

Root Attributes

Attribute Type Notes

private :
m_pGraphics3 | CGraphi
DSystemImple | cs3DSyst
mentation em

private :
m_pGraphics3 | IGraphic
DSystemlInterf | s3DSyste

| ace [m
Root Methods
Method Type Notes
Root public: param: resourceConfigFile [
(std::string&) std::string& - inout]
Construction/Destruction

~Root () public

abstract:

public: param: objectSystem [
createGraphics | IGraphic | IGraphics3DObjectSystem™* -
3DSystem s3DSyste | inout]
(IGraphics3D | m* param: xSize [int-in]
ObjectSystem* param: ySize [int-in]
, int, int, int, param: bits [int-in]
bool) param: fullScreen [bool - in]
gsGetHWND | public:
0 HWND

286

287

B-122251.2 Private Graphics3D System Implementation

IGraphics3DViewProcessor|
CGraphics3DView Processor

NNNNNNN

+ CGraphics3DView s3DView, Ogre::Viewport', Ogre::Camera’, Ogre:

(Graphics3DProcessorobjec]
CGraphics3DProcessor Object

m_pEntity: *Ogre::Entity

bleObject’, Ogre:

+ CGrap g
+ ~CGraphics3DPr 0

+_processGraphics3DObject(IGraphics3DCamera*, unsigned int) : void
JEer - vord

Figure 127 : Private Graphics3D System Implementation

B-1.2225121.1 CGraphics3DProcessorObject

Type: public Class

Extends: 1Graphics3DProcessorObject. Implements:
IGraphics3DProcessorObject.
Package: Private Graphics3D System Implementation

This is the Graphics3D Object observer that attaches to a game object. It uses the
Graphics3D interface into the game object to get access to the necessary data. The
Graphics3D Processor object will do that calculations treating the game object simply as
a data access point.

CGraphics3DProcessorObject Attributes

Attribute Type Notes

private :
m_piGraphics | IGraphic
3DProcessable | s3DProc
Object essableO
bject

private :
m_pExternalS | Ogre::C
ceneManager | External
SceneMa
nager

m_pEntity private :
Ogre::En
tity

m_pExternalS
ceneNode

private :

Ogre::C

External
SceneMa
nagerNo
de

CGraphics3DProcessorObject Methods

Method Type Notes

public: param: obj [
CGraphics3DP IGraphics3DProcessableObject™
rocessorObject - inout]
(IGraphics3D param:
ProcessableO pSceneManagerConnector [
bject*, Ogre::CExternalSceneManager*
Ogre::CExtern - inout]
alSceneManag
er*) Construction/Destruction

public
~CGraphics3D | abstract:
ProcessorObje
ct ()

public:
getExternalSce | Ogre::C
neNode () External

SceneMa

nagerNo

de*

public: param: camera [
processGraphi | void IGraphics3DCamera* - inout]
cs3DObject param: ProcessFlags [unsigned
(IGraphics3D int-in]
Camera*,
unsigned int)

public Only required in C++ because
release3DProc | abstract: | there is no memory management
essorObject () | void

B-12225121.2

Type:
Package:

CGraphics3DSystem

public Class
Private Graphics3D System Implementation

288

289

This class represents the implementation of the Graphics3D system. It implements the
IGraphics3DSystem interface, and will be responsible for performing 3D Graphics
operations on the objects it receives from the Object component.

CGraphics3DSystem Attributes

Attribute Type Notes

private :

m_pGraphics3 | IGraphic
DObjectSyste | s3DObje
m ctSystem

m_pOgreRoot | private :
Ogre::Ro
ot

m_pWindow | private :
Ogre::Re
nderWin
dow

private :
m_pSceneMan | Ogre::C
agerConnector | UseExter

nalScene
Manager
S
private :
m_viewportM | VIEWPO
ap RTMAP
private :
m_availableVi | std::dequ
ewportlDs e<int>
private :
m_usedViewp | std::dequ
ortlDs e<int>

CGraphics3DSystem Methods

Method Type Notes

public: param: resourceConfigFile [
CGraphics3DS ProgrammingUtilitiesLibrary::St
ystem ring& - inout]
(Programming
UtilitiesLibrar Construction/Destruction
y::String&)

public

~CGraphics3D | abstract:
System ()

public:
getSceneMana | Ogre::C
gerConnector | UseExter
0 nalScene

Manager

S*

public param: objectSystem [
gs3dConnectO | abstract: | IGraphics3DObjectSystem™* -
bject3DSyste | void inout]
m
(IGraphics3D IGraphics3DSystem
ObjectSystem*

public param: xSize [int-in]
gs3dConfigure | abstract: | param: ySize [int-in]
AndStartGrap | void param: bits [int - in]
hics3DSystem param: fullScreen [bool - in]
(int, int, int,
bool)

public param: tDiff [float - in]
gs3dTickGrap | abstract:
hics3DSystem | void
(float)
processView | private: | param: view [
(IGraphics3D | void IGraphics3DView™* - inout]
View*)

private: param: resourceConfigFile [
setupResource | void ProgrammingUltilitiesLibrary::St
S ring& - inout]
(Programming
UtilitiesLibrar
y::String&)

private:
configureOgre | void
WindowsSettin
gs ()

public param: prml [void - in]
getSingletonPt | static:
r (void) CGraphi | Singleton Stuff

cs3DSyst

em*
getSingleton | public param: prml [void - in]
(void) static:

290

291

CGraphi
cs3DSyst
em&

B-1.22251213 CGraphics3DViewProcessor
Type: public Class
Extends: 1Graphics3DViewProcessor. Implements:

IGraphics3DViewProcessor.
Package: Private Graphics3D System Implementation

This class attaches to a view and processes the view (i.e. uses the view interface to
request objects and works with the object processors attached to the objects).

CGraphics3DViewProcessor Attributes

Attribute Type Notes
private :
m_piGraphics | IGraphic
3DView s3DView
private :
m_pOgreView | Ogre::Vi
port ewport
private :
m_pOgreCam | Ogre::Ca
era mera
private :
m_pOgreExter | Ogre::C
nalSceneMana | External
ger SceneMa
nager
private :
m_pViewVisi | Ogre::Ex
bleNodeL.ist ternalNo
deList

CGraphics3DViewProcessor Methods

Method

Type

Notes

CGraphics3D
ViewProcessor
(IGraphics3D
View*,

public:

param: pView [
IGraphics3DView* - inout]
param: pOgreViewport [
Ogre::Viewport* - inout]
param: pOgreCamera [

Ogre::Viewpo
rex,
Ogre::Camera
*

Ogre::CExtern
alSceneManag
er*)

Ogre::Camera* - inout]

param: pOgreExtSceneMgr [
Ogre::CExternalSceneManager*
- inout]

Construction/Destruction

public
~CGraphics3D | abstract:
ViewProcessor
0

public
release3DVie | abstract:
wProcessor () | void
processView | public:
0 void

private: | param: cam [
updateOgreCa | void IGraphics3DCamera* - inout]
mera

(IGraphics3D
Camera*)

292

293

B-12252 Graphics3DComponent - Interfaces

Name: Graphics3DComponent - Interfaces

Author: Jeff Plummer The simple design isNOT presented as THE DESIGN TO USE for
Version 1.0 this architecture. It ismerely a simple implementation of this
Created 8/18/2004 3:50:57 PM architecture.

Updated: 11/4/2004 4:14:49 PM

| Interfaces the Object System can use to communicate with the Graphics3D System [

+ IGraphics3DProcessorObject
+ IGraphics3DSystem

+ IGraphics3DViewProcessor

| Interfaces The Object System Implements [

+ IGraphics3DCamera

+ IGraphics3DCapableObject

+ IGraphics3DObjectSystem

+ IGraphics3DProcessableObject
+ IGraphics3DSceneManager

™ + IGraphics3DView

Shared Data Types

+ iRect

+ point2d
+ point3f
+ pointaf

Figure 128 : Graphics3DComponent - Interfaces

294

B-1222521 Interfaces the Object System can use to communicate with the
Graphics3D System

This diagram shows the interfaces that are made available to the game system to use in
order to communicate with the Graphics3D System.

Name: Interfaces the Object System can use to communicate with the Graphics3D System

Author: Jeff Plummer

Version: 1.0

Created: 10/11/2004 5:28:16 PM The simple design isNOT presented as THE DESIGN TO USE for
Updated: 11/5/2004 3:12:14 PM this architecture. Itismerely a simple implementation of this

architecture.

«interface»
IGraphics3DSystem

+ «pure» gs3dConnectObject3DSystem(IGraphics3DObjectSystem®) : void
+ «pure» gs3dConfigureAndStartGraphics3DSystem(int, int, int, bool) : void
+ «pure» gs3dTickGraphics3DSystem(float) : void

«interface»
IGraphics3DProcessorObject

+ «pure» release3DProcessorObject() : void

«interface»
IGraphics3DViewProcessor

+ «pure» release3DViewProcessor() : void

Figure 129 : Interfaces the Object System can use to communicate with the
Graphics3D System

B-12225211.1 IGraphics3DProcessorObject

Type: public abstract «interface» Interface
Package: Interfaces the Object System can use to communicate with the Graphics3D
System

This is the interface the game system can use to access the domain-specific processor that
is attached to a game object. This example is empty, showing that game objects don't
necessarily require domain-specific functionality access.

IGraphics3DProcessorObject Interfaces

Method Type Notes
«pure» Only required in C++ because
release3DProc | public there is no memory management

essorObject () | abstract:
void

295

B-1.2225211.2 IGraphics3DSystem

Type: public abstract «interface» Interface
Package: Interfaces the Object System can use to communicate with the Graphics3D
System

This interface is the architectural connection from the game system to the Graphics3D
component. One of the major goals of this architecture is to limit interaction from
outside into the Graphics3D component. So this interface will provide only the
functionality to setup the Graphics3D system and provide the Graphics3D system with
the means to communicate back to the data. From that point on most communication will
originate from the Graphics3D system back to the data.

IGraphics3DSystem Interfaces

Method Type Notes

«pure» param: objectSystem [
gs3dConnectO | public IGraphics3DObjectSystem™ -
bject3DSyste | abstract: | inout]

m void

(IGraphics3D Use this method to connect an
ObjectSystem* Graphics3D Capable Object

) Management System to the

Graphics3D Component.

«pure» param: xSize [int-in]
gs3dConfigure | public param: ySize [int-in]
AndStartGrap | abstract: | param: bits [int-in]

hics3DSystem | void param: fullScreen [bool - in]

(int, int, int,

bool) Configuration of the gaphics
engine.

«pure» param: tDiff [float - in]
gs3dTickGrap | public
hics3DSystem | abstract: | Use this method to Tick the
(float) void Graphics3D system, so that it
will request and process 3D
Graphical objects.

B-1.222521.13 |Graphics3DViewProcessor
Type: public abstract «interface» Interface

296

Package: Interfaces the Object System can use to communicate with the Graphics3D
System

IGraphics3DViewProcessor Interfaces

Method Type Notes
«pure» Only required in C++ because
release3DVie | public there is no memory management

wProcessor () | abstract:
void

B-1222522

Interfaces The Object System Implements

297

This diagram shows the interfaces the object system will implement in order to be usable
by the Graphics3D System.

«interface»
bleObject
+ doNothing(): void

d: 10/11/2004 5:27:39 PM
dated: 11/8/2004 3:46:26 PM

«nterface»
IGraphics3DView

0
3dGetViewRect(: iRect*
K

hics3D:
ure» gs3dGetSubViews) : IGraphics3DViewlterator* Pp— bjects)
ure» gs3dGetEnabledinterfaceFlagsForView() : unsigned int

«interface»

+ «pure» gs3dGet3DCameraLocation() : point3fé&
+ _«pure» gs3dGet3DCameraL0okAt() : point3té

B-122252211

public abstract «interface» Interface
Interfaces The Object System Implements

Type:
Package:

Figure 130 : Interfaces The Object System Implements

IGraphics3DCamera

IGraphics3DCamera Interfaces

Method Type Notes

«pure»
gs3dGet3DCa | public
meralLocation | abstract:

0 point3f&

((pu re»
gs3dGet3DCa | public
meraLookAt () | abstract:

point3f&

B-122252212

Type:
Package:

IGraphics3DCapableObject

public abstract «interface» Interface
Interfaces The Object System Implements

298

IGraphics3DCapableObiject Interfaces

Method Type Notes
doNothing () | public

abstract:

void

B-122252213 IGraphics3DObjectSystem

Type: public abstract «interface» Interface
Package: Interfaces The Object System Implements

IGraphics3DObjectSystem Interfaces

Method Type Notes

((pu re»
gs3dGetGraph | public
icsViews () abstract:
IGraphic
s3DView
Iterator™

B-122252214 IGraphics3DProcessableObject

Type: public abstract «interface» Interface
Extends: IGraphics3DCapableObject.
Package: Interfaces The Object System Implements

IGraphics3DProcessableObject Interfaces

Method Type Notes

«pure»
gs3dGetGraph | public
ics3DProcesso | abstract:
rObject () IGraphic
s3DProc
essorObj
ect*

«pure» param: procObj [
gs3dAssignGr | public IGraphics3DProcessorObject™ -
aphics3DProce | abstract: | inout]
ssorObject void
(IGraphics3D
ProcessorObje
ct*)

((pure))
gs3dGetGraph | public
ic3DInterfaces | abstract:
Implemented | unsigned
0 int

«pure»
gs3dGetGraph | public
ics3DResource | abstract:

s() IStringlte

rator*

«pure»
gs3dGet3DObj | public
ectLocation () | abstract:

point3f&

((pure»
gs3dGet3DObj | public
ectOrientation | abstract:
AsQuaternion | point4f&

0

B-122252215

Type:
Package:

IGraphics3DSceneManager

public abstract «interface» Interface
Interfaces The Object System Implements

IGraphics3DSceneManager Interfaces

Method Type Notes
((pu re»

gs3dGetVisibl | public

eGraphics3DO | abstract:

bjects () IGraphic
s3DObje

ctlterator

*

299

B-122252216

Type:
Package:

IGraphics3DView

public abstract «interface» Interface
Interfaces The Object System Implements

IGraphics3DView Interfaces

Method Type Notes

((pure))
gs3dGetGraph | public
ics3DViewPro | abstract:
cessor () IGraphic

s3DView

Processo

I"*

«pure» param: viewProc [
gs3dAssignGr | public IGraphics3DViewProcessor* -
aphics3DView | abstract: | inout]
Processor void
(IGraphics3D
ViewProcessor
*)

((pure»
gs3dGet3DSce | public
neCamera () abstract:

IGraphic

s3DCam

era*

«pure»
gs3dGetView | public
Rect () abstract:

iRect*

((pure»
gs3dGetScene | public
Manager () abstract:

IGraphic

s3DScen

eManage

r*

((pure))
gs3dGetSubVi | public
ews () abstract:

300

IGraphic
s3DView
Iterator™

gs3dGetEnabl
edInterfaceFla
gsForView ()

«pure»
public
abstract:
unsigned
int

301

302

B-1226.2 Graphics 2D System

This represents one graphics 2D logical module. It's functionality will draw objects in 2-
Space using an object defined resource.

B-1226.1 Graphics Component - Implementation

This package contains an example implementation of the Graphics system. The
implementation is not meant to show how to implement an graphics engine, but rather
show how a graphics component could be connected using the proposed architecture.

Exported Classes |

+ Root

Private Graphics System Implementation

+ CGraphicsProcessorObject
+ CGraphicsSystem

+ CGraphicsViewProcessor
|] + Resource Management

Figure 131 : Graphics Component - Implementation

303

B-12226.11 Exported Classes

Singleton
Root

- m_pGraphicsSystemInterface: *IGraphicsSystem
- m_pGraphicsSystemIimplementation: *CGraphicsSystem

Root(std::string&)

~Root()

createGraphicsSystem(IGraphicsObjectSystem*, int, int, int, bool) : IGraphicsSystem*
gsGetHWND() : HWND

+ o+ 4+ +

Figure 132 : Exported Classes

B-12226.1111 Root

Type: public Class
Extends: Singleton.
Package: Exported Classes

This class is the only exported class in the Graphics component. It represents the initial
link to the Audio system. From here the game system will connect to the Graphics
system, and request an interface to the Graphics system. Root is not part of the formal
architecture, it is an implementation connection point. In the real world it may be
necessary to communicate in more ways with the logical component (due to specific
library initializations, etc.). These "extra" communications can be done through the root
object directly to the instance of the Graphics system, rather than through the
architectural specified interface.

@author Jeff Plummer

@version 1.0

@updated 11-Feb-2004 07:59:15 PM

Root Attributes

Attribute Type Notes

private :
m_pGraphicsS | IGraphic
ysteminterface | sSystem

private :

m_pGraphicsS | CGraphi
ystemImpleme | csSystem
ntation

Root Methods

Method

Type

Notes

Root
(std::string&)

public:

param: resourceConfigFile [
std::string& - inout]

Constructor - Create an instance
of the Graphics system.
@param configFile

~Root ()

public
abstract:

Destructor - Destroy the instance
of the Graphics System.

createGraphics
System
(IGraphicsObj
ectSystem*,
int, int, int,
bool)

public:
IGraphic
sSystem™*

param: objectSystem [
IGraphicsObjectSystem™ - inout
]
param: xSize [int-in]
param: ySize [int-in]
param: bits [int-in]

param: fullScreen [bool - in]

Connect the object system to the
Graphics system and return an
interface to Graphics system
@param objectSystem A
pointer to an object that
implements the
IGraphicsObjectSystem
interface. The Graphics
component will use this interface
to communicate to the data
section of the game system.
@param xSize The number of
pixels in the X direction of the
render window.

@param ySize The number of
pixels in the Y direction of the
render window.

@param bits The number of
bits per pixel data format.
@param fullScreen Make the
render window full screen or run
in a window.

gsGetHWND
0

public:
HWND

Implementation specific function
that returns a handle to the
window. Windows(tm)
implementation specific.

304

B-12226.12

B-12226.1211

public Class
Implements: 1GraphicsProcessorObject.
Private Graphics System Implementation

Type:

Package:

Private Graphics System Implementation

Name: Private Graphics System Implementation
Author: Jeff Plummer

Version: 1.0

Created: 8/18/2004 5:10:46 PM

Updated: 11/8/2004 2:55:30 PM

CGraphicsProcessorObject

CGraphicsSystem

pGraphicsObiject: *IProcessableGraphicsObject
t

m
- om
m
m

- m_bisConnectedToObject: bool

- m_nEnabledGaphicsinterfaces: unsigned int

- m_i2DGraphicsObject: *I2DGraphicsObject

- m_i2D: Object: *I12D: Object
- m_ScreenPosition: point2f

- m_ImageOffsetinResource: point2d

- m_CurentimageOffsetinResource: point2d

- m_nimageWidth: int

- m_nimageHeight: int

- m_pScreenSurface: *SDL_Surface

- m
- m_bUseFullScreen: bool
- m_nxSize: int

- m_nysSize: int

- m_nbits: int

- m_pObjectSystem: *IGraphicsObjectSystem
- m_pScreen: *SDL_Surface

*C

T C Sl
+ ~CGraphicsSystem()
+ gsGetHWND() : HWND

gsConnect

- releaseProcessorObject() : void
+ CGraphicsProcessorObject(
c

Object?)

+ ~CGraphicsProcessorObject()

+ processGraphicsObject(GraphicsCamera*, unsigned int) : void

- drawGraphicsObject() : void

- registerGraphicsObjectinterfaces) : void

- registerAs2DGraphicsObiect() : void

- registerAs2DSpriteGraphicsObject() : void

- process2DGraphicsObject(iGraphicsCamera*, unsigned int) : void
I D *, unsigned int)

+ _setScreenSurface(SDL_Surface®) : void

void

String&)

void

5

+ gsConfigureAndStartGraphicsSystemint, int, int, bool) : void

+ gsTickGraphicsSystem(float) : void
Jilitiest

) : void

1GraphicsViewProcessor

CGraphicsView Processor

- m_piGraphicsView: *IGraphicsView
- m_pScreen: *SDL_Surface

+ CGraphicsViewProcessor(IGraphicsView*, SDL_Surface®)
+ ~CGraphicsViewProcessor()
+ releaseViewProcessor() : void
+ _processView) : void

Figure 133 : Private Graphics System Implementation

CGraphicsProcessorObject

CGraphicsProcessorObject Attributes

Attribute

Type Notes

m_pGraphics

Object

private :
IProcess
ableGrap
hicsObje
ct

m_pGraphicsR
esourceObject

private :

CGraphi
csResour
ce

m_vProcessor

Functions

private :

std::vect
or<Proc
essorFun

305

ction>

private :
m_GraphicsRe | Program
sourceName mingUtili

tiesLibra

ry::Strin

g -

private :
m_blsConnect | bool
edToObject

private :
m_nEnabledG | unsigned
aphicsinterfac | int
es

private :
m_i2DGraphic | 12DGrap
sObject hicsObje

ct

private :
m_i2DSpriteG | 12DSprit
raphicsObject | eGraphic

sObject

private : | Variables used for rendering a
m_ScreenPosit | point2f 2D Image
ion

private :
m_ImageOffse | point2d
tiInResource

private :
m_Currentlma | point2d
geOffsetIinRes
ource

private :
m_nlmageWid | int
th

private :
m_nlmageHei | int
ght

private
m_pScreenSur | static :
face SDL_Sur

face

306

CGraphicsProcessorObject Methods

Method Type Notes
private IGraphicsProcessorObject
releaseProcess | abstract:
orObiject () void
public: Construction/Destruction
CGraphicsPro
cessorObject ()
public: param: pObject [
CGraphicsPro IProcessableGraphicsObject* -
cessorObject inout]
(IProcessable
GraphicsObje
ct*)
public
~CGraphicsPr | abstract:
ocessorObject
0
public: param: camera [
processGraphi | void IGraphicsCamera* - inout]
csObject param: ProcessFlags [unsigned
(IGraphicsCa int-in]
mera*,
unsigned int)
private:
drawGraphics | void
Object ()
private:
registerGraphi | void
csObjectinterf
aces ()
private:
registerAs2DG | void
raphicsObject
0 _
private:
registerAs2DS | void
priteGraphics
Object ()
private: param: camera [
process2DGra | void IGraphicsCamera* - inout]

phicsObject
(IGraphicsCa
mera¥*,
unsigned int)

param: InterfaceEnabledCode [
unsigned int - in]

307

private: | param: camera [
process2DSpri | void IGraphicsCamera* - inout]
teGraphicsObj param: InterfaceEnabledCode [
ect unsigned int - in]
(IGraphicsCa
mera¥*,
unsigned int)

public: param: screen [SDL_Surface* -
setScreenSurfa | void inout]
ce

(SDL_Surface
*)

Variables used for rendering a
2D sprite

B-12226.1.212

public Class
Implements: 1GraphicsSystem.
Private Graphics System Implementation

Type:

Package:

This class represents the implementation of the Graphics system. It implements the
IGraphicsSystem interface, and allows the game system to communicate with the

CGraphicsSystem

Graphics component.
@author Jeff Plummer

@version 1.0

@updated 11-Feb-2004 08:33:29 PM

CGraphicsSystem Attributes

Attribute Type Notes
private : | Pointer to the interface to the
m_pObjectSys | IGraphic | object system. Using this
tem sObjectS | interface the object system will
ystem request graphical objects it
should draw, etc.
m_pScreen private : | Implementation Specifc: A
SDL_Sur | pointer to an SDL surface for
face drawing.
private : | The graphics resource manager
m_pGraphicsR | CGraphi | object that is responsible for
esourceManag | csResour | loading and storing in memory
er ceManag | the graphics resources.
er
private : | Graphical view is fullscreen or
m_bUseFullSc | bool windowed.

308

reen

m_nxSize private : | Screen size in the X direction.
int

m_nySize private : | Screen size in the Y direction.
int

m_nbits private : | Number of bits per pixel.
int

CGraphicsSystem Methods

Method Type Notes
public: param: configFile [
CGraphicsSyst ProgrammingUltilitiesLibrary::St
em ring& - inout]
(Programming
UtilitiesLibrar Constructor
y::String&) @param configFile
public Destructor
~CGraphicsSy | abstract:
stem ()
gsGetHWND | public: Implementation specific***
0 HWND Returns a handle to the Windows
HWND.
public param: objectSystem [
gsConnectObj | abstract: | IGraphicsObjectSystem* - inout
ectSystem void]
(IGraphicsObj
ectSystem*) The architectural interface
implementation method that
connects the graphics system to
the object system.
@param objectSystem
public param: xSize [int-in]
gsConfigureA | abstract: | param: ySize [int-in]
ndStartGraphi | void param: bits [int - in]
csSystem (int, param: fullScreen [bool - in]
int, int, bool)

The architectural interface
implementation method that
configures the graphics system
with regard to dimensions and
pixel depth.

@param xSize

@param ySize

@param bits

309

@param fullScreen

public param: tDiff [float - in]
gsTickGraphic | abstract:
sSystem void The architectural interface
(float) implementation method that tells
the graphics system to iterate
and execute graphics operations
on the objects given to it from
the object system.

private: | param: resourceConfigFile [

setupResource | void ProgrammingUltilitiesLibrary::St
S ring& - inout]

(Programming

UtilitiesLibrar Implementation specific***
y::String&) Method is used to further

configure the graphics system.
@param configFile

B-1.2226.1.2.13 CGraphicsViewProcessor

Type: public Class
Implements: 1GraphicsViewProcessor.
Package: Private Graphics System Implementation

CGraphicsViewProcessor Attributes

Attribute Type Notes
private :

m_piGraphics | IGraphic

View sView

m_pScreen private :
SDL_Sur
face

CGraphicsViewProcessor Methods

Method Type Notes

public: param: pView [IGraphicsView*
CGraphicsVie - inout]
WProcessor param: pScreen [SDL_Surface*
(IGraphicsVie - inout]
w*,

310

SDL_Surface*
)

Construction/Destruction

public
~CGraphicsVi | abstract:
ewProcessor ()

public
releaseViewPr | abstract:
ocessor () void
processView | public:
0 void

311

312

B-1226.2 Graphics Component - Interfaces

Name:
Author:
Version
Created

Updated:

Graphics Component - Interfaces
Jeff Plummer

1.0

8/18/2004 5:07:32 PM
11/4/2004 4:11:47 PM

The simple design isNOT presented as THE DESIGN TO USE for
this architecture. It ismerely a simple implementation of this
architecture.

I Interfaces Object System Can Use To Communicate With Graphics System l

+ IGraphicsProcessorObject
+ IGraphicsSystem

Interfaces The Object System Implements [

+ [2DGraphicsCamera

+ 12DGraphicsObject

+ I2DSpriteGraphicsObject
+ IGraphicsCamera

+ IGraphicsCapableObject
+ IGraphicsObjectlterator
+ IGraphicsObjectSystem
+ IGraphicsSceneManager
+ IGraphicsView

+ IGraphicsViewlterator

+ IProcessableGraphicsObject

Shared Data Types

- <anonymous>
- <anonymous>
+ImageType
+ iRect

+ point2d

+ point2f

N DN 00 08 0 mn

Figure 134 : Graphics Component - Interfaces

313

B-12226.21 Interfaces Object System Can Use To Communicate With
Graphics System

This diagram shows the interfaces that are made available to the game system to use in
order to communicate with the Graphics2D System.

«interface»
IGraphicsProcessorObject

+ «pure» releaseProcessorObject() : void

«interface»
IGraphicsSystem

+ «pure» gsConnectObjectSystem(IGraphicsObjectSystem*) : void
+ «pure» gsConfigureAndStartGraphicsSystem(int, int, int, bool) : vp
+ «pure» gsTickGraphicsSystem(float) : void

ic

Figure 135 : Interfaces The Graphics System Implements

B-12226211.1 IGraphicsProcessorObject

Type: public abstract «interface» Interface
Package: Interfaces Object System Can Use To Communicate With Graphics
System

IGraphicsProcessorObject Interfaces

Method Type Notes

«pure» Only required in C++ because
releaseProcess | public there is no memory management
orObject () abstract:

void

B-12226.21.12 IGraphicsSystem

314

Type: public abstract «interface» Interface
Package: Interfaces Object System Can Use To Communicate With Graphics
System

This interface is the architectural connection from the game system to the Graphics
component. One of the major goals of this architecture is to limit interaction from
outside into the Graphics component. So this interface will provide only the functionality
to setup the Graphics system and provide the Graphics system with the means to
communicate back to the data. From that point on most communication will originate
from the Graphics system back to the data.

@author Jeff Plummer

@version 1.0

@updated 12-Feb-2004 08:32:46 PM

IGraphicsSystem Interfaces

Method Type Notes

«pure» param: objectSystem [
gsConnectObj | public IGraphicsObjectSystem™ - inout

ectSystem abstract: |]
(IGraphicsObj | void
ectSystem*) Architectural interface method

used to connect the Graphics
component to the object system.

«pure» param: xSize [int-in]
gsConfigureA | public param: ySize [int-in]
ndStartGraphi | abstract: | param: bits [int - in]
csSystem (int, | void param: fullScreen [bool - in]
int, int, bool)

«pure» param: tDiff [float - in]
gsTickGraphic | public
sSystem abstract:
(float) void

B-12226.22

Interfaces The Object System Implements

315

This diagram shows the interfaces the object system will implement in order to be usable
by the Graphics2D System.

interface»

+ «pure» gsGetGraphicsObjects() IGraphicsObjecterator*

ntertace» cinterace>
IGraphicsView Ilterator
+ «purer + lierator()
+ cpure» gsGetviewRect) : iRect + cpure» frsEnty): T
+ puren) void |+ apuren isDone(: bool
+ cpuren gsGetSceneManager() : GraphicsSceneHanager + cpure» lastEnty): T
- + cpure» numEntries(): int
* cpuren gSGetsubViews(: GraphicsView terator” + <pures resetterator): void
+ <pure» gsGetEnabledhertaceFlagsForview : nsigned int + cpuren curentEnty): T
+cpure> iterateFonward(: void
aeglizer «ealger
P 5 ntertacer
«interface» interface>
+ «pure» etGraphicsViews(raphicsViewterator | & LI :
pure» gsGelGraphicsViews() : GraphicsViewterato o o Dm0
+ previousEnty): T + previousEnty): T
+ nextenty) . nextEnuy): T
+ lastEniy): T + lastEniy0: T
+_ numnties) : int + numEntes(: int
Name: Interfaces The Object Sysiem Must mplement
Author: Jeft Plummer
Verson

10
Created: /1812004 2:09:56 PM
Updated: 11/5/2004 3:20:56 PM

«nterface»

doNothing() : void

[y

winterface»

B-12226.2211

«ntertace»

“interface»

+ «pure» gsCurrentimageOfisetinResource() : poini2d&

+ «pure» gsGetWorldPosition(: point2ié
+ «pure» gsGetimageOffsetinResource() : point2d&
+ «pure» gsGetimageHeight(: int
+ «pures int
Name: Interfaces The Object System Must Implement
Author: Jef Plummer
Verson: 1.0

Created: 6/18/2004 2:09:56 PM
Updated: 11/5/2004 3:20:56 PM

Figure 136 : Interfaces The Object System Must Implement

«pures p
«pure»

«pure» gsGetGraphicinteriaceskplemented(: unsigned int
«puren gsGetGraphicsResources): IStringterator
«pure» gsGetResources) : std:vector<std:string*>*

I2DGraphicsCamera

ntertace»

nterface»
12DGraphicsCamera

+ «pure» gsGet2DCameraLocation() : point2i&.

316

Type: public abstract «interface» Interface
Extends: IGraphicsCamera.
Package: Interfaces The Object System Implements

12DGraphicsCamera Interfaces

Method Type Notes

((pu re»
gsGet2DCame | public
raLocation () | abstract:
point2f&

B-1.2226.2.2.1.2 12DGraphicsObject

Type: public abstract «interface» Interface
Extends: 1GraphicsCapableObject.
Package: Interfaces The Object System Implements

12DGraphicsObject Interfaces

Method Type Notes
((pu re»

gsGetWorldPo | public

sition () abstract:
point2f&
«pure»

gsGetlmageOf | public
fsetinResource | abstract:

0 point2d&
((pu re»

gsGetlmageHe | public

ight () abstract:
int
«pure»

gsGetlmageWi | public

dth () abstract:
int

B-1.2226.2.2.1.3 I2DSpriteGraphicsObject

Type: public abstract «interface» Interface
Extends: 1GraphicsCapableObject.
Package: Interfaces The Object System Implements

12DSpriteGraphicsObject Interfaces

Method Type Notes

((pu re»
gsCurrentlmag | public
eOffsetinReso | abstract:
urce () point2d&

B-1.2226.22.14 IGraphicsCamera

Type: public abstract «interface» Interface
Package: Interfaces The Object System Implements

B-1.2226.2.2.15 IGraphicsCapableObiject

Type: public abstract «interface» Interface
Package: Interfaces The Object System Implements

IGraphicsCapableObject Interfaces

Method Type Notes
doNothing () | public

abstract:

void

B-1.2226.2.2.1.6 IGraphicsObijectlterator

Type: public abstract «interface» Interface
Implements: Ilterator.
Package: Interfaces The Object System Implements

IGraphicsObjectlterator Interfaces

317

318

Method Type Notes

Ilterator () public:

firstEntry () public
abstract:
T

previousEntry | public
0 abstract:
T

nextentry () public
abstract:
T

lastEntry () public
abstract:
T

numEntries () | public
abstract:
int

B-1.2226.2.2.1.7 IGraphicsObjectSystem

Type: public abstract «interface» Interface
Package: Interfaces The Object System Implements

This interface is the architectural connection from the object system responsible for
managing objects capable of Graphics to the Graphics component. Using this interface
the Graphics component will request Graphics capable objects and perform the
appropriate Graphics operations on them.

@author Jeff Plummer

@version 1.0

@updated 05-Mar-2004 09:31:42 PM

IGraphicsObjectSystem Interfaces

Method Type Notes

((pu re»
gsGetGraphics | public
Views () abstract:
IGraphic
sViewlter
ator*

B-1.2.2.26.2.2.1.8 IGraphicsSceneManager

Type: public abstract «interface» Interface

Package:

Interfaces The Object System Implements

IGraphicsSceneManager Interfaces

Method

Type

Notes

gsGetGraphics
Obijects ()

((pu re»
public
abstract:
IGraphic
sObjectlt
erator*

B-12226.221.9

IGraphicsView

Type: public abstract «interface» Interface

Package:

IGraphicsView Interfaces

Interfaces The Object System Implements

Method Type Notes

((pu re»
gsGetGraphics | public
ViewProcessor | abstract:

0 IGraphic

sViewPro

cessor*

«pure»
gsGetViewRec | public
t() abstract:

iRect*

«pure» param: viewProc [
gsAssignGrap | public IGraphicsViewProcessor* -
hicsViewProce | abstract: | inout]
ssor void
(IGraphicsVie
wProcessor*)

((pu re»
gsGetSceneMa | public
nager () abstract:

IGraphic

319

sSceneM
anager*

gsGetSceneCa
mera ()

((pu re»
public
abstract:
IGraphic
sCamera

*

gsGetSubView
s()

((pu re»
public
abstract:
IGraphic
sViewlter
ator*

gsGetEnabledl
nterfaceFlagsF
orView ()

«pure»
public
abstract:
unsigned
int

B-12.226.22.1.10

IGraphicsViewlterator

Type: public abstract «interface» Interface
Implements: Ilterator.

Package:

Interfaces The Object System Implements

IGraphicsViewlterator Interfaces

Method Type Notes
Ilterator () public:
firstEntry () public
abstract:
T
previousEntry | public
0 abstract:
T
nextentry () public
abstract:
T
lastEntry () public
abstract:

T

320

numEntries () | public
abstract:
int

B-1.2226.2.2.1.11 IProcessableGraphicsObject

Type: public abstract «interface» Interface
Extends: IGraphicsCapableObject.
Package: Interfaces The Object System Implements

IProcessableGraphicsObject Interfaces

Method Type Notes

«pure»
gsGetGraphics | public
ProcessorObje | abstract:
ct() IGraphic

sProcess

orObject

*

«pure» param: procObj [
gsAssignGrap | public IGraphicsProcessorObject* -
hicsProcessor | abstract: | inout]
Object void
(IGraphicsPro
cessorObject*)

«pure»
gsGetGraphicl | public
nterfacesimple | abstract:
mented () unsigned

int

«pure»
gsGetGraphics | public
Resources () abstract:

IStringlte

rator*

«pure»
gsGetResource | public
s() abstract:

std::vect

or<std::s

tring*>*

321

322

B-1223

This package represents a few template classes or generic classes that were shared

Utility Includes

accross projects.

Name:
Author.
Version.
Created:
Updated:

B-122311111

Uility Includes
Jeff Plummer

21812004 3:26:37 PM
111412004 4:13:44 P

VectorBasedlteratorTemplateClass

basic_string

cstdstr

nChars: ULONG

cstast)
CSUSHMYTYPES)

«pure» fIStENY) : T
«pure» isDone(: bool
«pure> lastEnty) : T
«pure numEnties() :int
«pures resetlerator() : void
«pures curentEntry) : T
«pure» iterateForward() : void

Freinss

m_Wector. *std-vector<T>
m_lterator: sd:vector<T>

CStdstistd:wsiing:
CSISUPCMYSTR, MYSIZE)
«nterfaces CStSU{PCSTR)
terator CSISHPCWSTR)
R, MYCITER)
Iiterator) CSISUMYSIZE, MYVAL, MYALLOC&)

cstdsu{_bsir_te
operator =(MYTYPER) : MYTYPE&

operator =(sd:siing8) : MYTYPE&

operator =(sd:wstiing&) : MYTYPE&

operator =(PCSTR) : MYTYPE&

operalor =(PCWSTR) : MYTYPE&

operator =(CT) : MYTYPE&

operator =(_bstr_t&): MYTYPE&
assgn(MYTYPER) : MYTYPER
assign(MYTYPER, MYSIZE, MYSIZE) : MYTYPER
assign(MYBASER) : MYTYPER
assign(MYBASER, MYSIZE, MYSIZE) : MYTYPER
assgn(CT*, MYSIZE) : MYTYPE&

assign(MYSIZE, MYVAL): MYTYPE&
asign(CT) : MYTYPEE

assign(MYCITER, MYCITER) : MYTYPE&
operator +=(MYTYPES) : MYTYPEE

operator +=(td:sing8) : MYTYPE&

VectorBasedlieratorTemplateClass)
AttachVector(std::vector<T>*) : void
firstEntry()

previousEntry(: T

nextEntry) : T

lastEntry): T

nunEnties(: int

operator MYTYPER
operator +=(PCSTR) : MYTYPE&

operalor +=(PCWSTR) : MYTYPE&

operator +=(CT) : MYTYPE&

operator +=(_bstr_t&) : MYTYPE&

«iend» operator+(MYTYPE&, MYTYPE) : MYTYPE
«hiend» operator+(MYTYPES, CT): MYTYPE
«iend» operator+(MYTYPE&, PCSTR) : MYTYPE
«hiend» operator+(MYTYPE&, PCWSTR) : MYTYPE
«iend» operator+(PCSTR, MYTYPEE) : MYTYPE
«hiend» operator+(PCWSTR, MYTYPES) : MYTYPE
«fiend» operator+(_bsir_{&, MYTYPES) : MYTYPE
«fiend> operator+(MYTYPE&, _bsir_{8) : MYTYPE
ToUpper): MYTYPE&

ToLower) : MYTYPEE

Nomalize() : MYTYPE&

GetBuf(ny) : CT*

BufferRel(: void
Buffer)

Bufferset(ny)

Equals(CT*, bool)

Load(UINT, HMODULE) : bool
Formal(UINT) : void

Formai(CT*) : void
AppendFomnat(CT) : void
AppendFamatV(CT*, va_lis): void
Formatv(CT*, va_lis): vaid
AllocsysString(- BSTR
Collate(PCMYSTR) - int
CollateNoCase(PCMYSTR) : int
Compare(PCMYSTR) int
CompareNoCase(PCMYSTR) int
Delete(int,int): int

FormatMessage(PCMYSTR) : void
FormatMessage(UINT) : void
Getatiny): CT
GetBuffer(ny) : CT*
GetBufferSetLength(ini) : CT*
GetLength(: int

Insert(int, CT) :int

Insert{int, PCMYSTR): int
1sEmpiy0 : bool

Lefiing): MYTYPE
LoadString(UINT) : bool
MakeLower() : void
MateReverse(: void
MakeUpper(: void

MidnD) : MYTYPE

Midnt, ing) : MYTYPE
ReleaseBuffer(n) : void

Replace(PCMYSTR, PCMYSTR) int

ReverseFind(CT) int

ReverseFind(PCMYSTR, MYSIZE) : int
£

SetSysString@STRY) : BSTR
SpanExcluding(PCMYSTR) : MYTYPE
Spanincluding(PCMYSTR) : MYTYPE
AnsToOem(: void

QemToAnsi(: void

THim0: MYTYPES

TrimLeft) : MYTYPE&

THmLef(CT): MYTYPER
TmLefPCMYSTR) : MYTYPER
TrmRight) : MYTYPER
THMRIGK(CT) : MYTYPER
THmRight(PCMYSTR) - MYTYPE&
FreeExtra() : void

operator [Iin) : CT&

operator Junsigned in) - CT&
operatorconst CT*)

Figure 137 : Utility Includes

CStdStr

323

Type: public Class
Implements: basic_string.
Package: Utility Includes

#define CStdStr _SS // avoid compiler warning 4786

CStdStr Attributes

Attribute Type Notes
nChars public : | struct SSSHDR - useful for non
ULONG | Std C++ persistence schemes.

CStdStr Methods

Method Type Notes
CStdStr () public: CStdStr inline constructors
CStdStr public: param: str [MYTYPE& - inout]
(MYTYPE&)
CStdStr public: param: str [std::string& - inout]
(std::string&)
CStdStr public: param: str [std::wstring& - inout
(std::wstring&]
)
CStdStr public: param: pT [PCMYSTR - in]
(PCMYSTR, param: n [MYSIZE - in]
MYSIZE)
CStdStr public: param: pA [PCSTR - in]
(PCSTR)
CStdStr public: param: pW [PCWSTR - in]
(PCWSTR)
CStdStr public: param: first [MYCITER - in]
(MYCITER, param: last [MYCITER - in]
MYCITER)
CStdStr public: param: nSize [MYSIZE - in]
(MYSIZE, param: ch [MYVAL - in]
MYVAL, param: al [MYALLOC& - inout
MYALLOC&)]
CStdStr public: param: bstr [_bstr_t& - inout]
(_bstr t&)
operator = public: param: str [MYTYPE& - inout]
(MYTYPE&) | MYTYPE

& CStdStr inline assignment

operators -- the ssasn function
now takes care of fixing the

324

MSVC assignment bug (see
knowledge base article
Q172398).

operator = public: param: str [std::string& - inout]
(std::string&) | MYTYPE
&
operator = public: param: str [std::wstring& - inout
(std::wstring& | MYTYPE |]
) &
operator = public: param: pA [PCSTR - in]
(PCSTR) MYTYPE
&
operator = public: param: pW [PCWSTR - in]
(PCWSTR) MYTYPE
&
operator = public: param: t[CT -in]
(CT) MYTYPE
&
operator = public: param: bstr [_bstr_t& - inout]
(_bstr_t&) MYTYPE
&
assign public: param: str [MYTYPE& - inout]
(MYTYPE&) | MYTYPE
& Overloads also needed to fix the
MSVC assignment bug (KB:
Q172398) Thanks to Pete The
Plumber for catching this one
*** They also are compiled if
you have explicitly turned off
refcounting
assign public: param: str [MYTYPE& - inout]
(MYTYPE&, MYTYPE | param: nStart [MYSIZE - in]
MYSIZE, & param: nChars [MYSIZE - in]
MYSIZE)
assign public: param: str [MYBASE& - inout]
(MYBASE&) | MYTYPE
&
assign public: param: str [MYBASE& - inout]
(MYBASE&, MYTYPE | param: nStart [MYSIZE - in]
MYSIZE, & param: nChars [MYSIZE - in]
MYSIZE)
assign (CT*, | public: param: pC [CT* - inout]
MYSIZE) MYTYPE | param: nChars [MYSIZE - in]

&

325

assign public: param: nChars [MYSIZE - in]
(MYSIZE, MYTYPE | param: val [MYVAL - in]
MYVAL) &
assign (CT*) | public: param: pT [CT* - inout]
MYTYPE
&
assign public: param: iterFirst [MYCITER - in
(MYCITER, MYTYPE |]
MYCITER) & param: iterLast [MYCITER - in
]
operator += public: param: str [MYTYPE& - inout]
(MYTYPE&) | MYTYPE
& | e
CStdStr inline concatenation. ----
operator += public: param: str [std::string& - inout]
(std::string&) | MYTYPE
&
operator += public: param: str [std::wstring& - inout
(std::wstring& | MYTYPE |]
) &
operator += public: param: pA [PCSTR - in]
(PCSTR) MYTYPE
&
operator += public: param: pW [PCWSTR - in]
(PCWSTR) MYTYPE
&
operator += public: param: t[CT -in]
(CT) MYTYPE
&
operator += public: param: bstr [_bstr_t& - inout]
(_bstr_t&) MYTYPE
&
operator+ «friend» | param: strl [MYTYPE& - inout
(MYTYPE&, public:]
MYTYPE&) MYTYPE | param: str2 [MYTYPE& - inout
]
addition operators -- global
friend functions.
operator+ «friend» | param: str [MYTYPE& - inout]

326

327

(MYTYPE&, public: param: t[CT -in]

CT) MYTYPE

operator+ «friend» | param: str [MYTYPE& - inout]

(MYTYPE&, public: param: sz [PCSTR - in]

PCSTR) MYTYPE

operator+ «friend» | param: str [MYTYPE& - inout]

(MYTYPE&, public: param: sz [PCWSTR - in]

PCWSTR) MYTYPE

operator+ «friend» | param: pA [PCSTR - in]

(PCSTR, public: param: str [MYTYPE& - inout]

MYTYPE&) MYTYPE

operator+ «friend» | param: pW [PCWSTR - in]

(PCWSTR, public: param: str [MYTYPE& - inout]

MYTYPE&) MYTYPE

operator+ «friend» | param: bstr [_bstr_t& - inout]

(_bstr_t&, public: param: str [MYTYPE& - inout]

MYTYPE&) MYTYPE

operator+ «friend» | param: str [MYTYPE& - inout]

(MYTYPE&, public: param: bstr [_bstr_t& - inout]

_bstr_t&) MYTYPE

ToUpper () public: | =m-mememememmm e
MYTYPE | ~---——~=mmmmmmmmeemeeceeee e Case
& changing functions ----------------

ToLower () public:
MYTYPE
&

Normalize () | public:
MYTYPE
&

GetBuf (int) public: param: nMinLen [int - in]
CT*

CStdStr -- Direct access to
character buffer. Inthe MS'
implementation, the at() function
that we use here also calls
_Freeze() providing us some
protection from multithreading
problems associated with ref-
counting. -----===-=======m==mmmmm--

328

SetBuf (int) public: param: nLen [int-in]

CT*
RelBuf (int) public: param: nNewLen [int-in]
void
BufferRel () public:
void
Buffer () public:
BufferSet public: param: nLen [int-in]
(int)
Equals (CT*, | public param: pT [CT* - inout]
bool) query: param: bUseCase [bool - in]

Load (UINT, | public: param: nld [UINT - in]
HMODULE) bool param: hModule [HMODULE -

FUNCTION: CStdStr::Load
REMARKS: Loads string from
resource specified by nID
PARAMETERS: nID - resource
Identifier. Purely a Win32 thing
in this case RETURN VALUE:
true if successful, false otherwise

Format public: param: nld [UINT - in]
(UINT) void

FUNCTION: CStdStr::Format
void _cdecl
Formst(CStdStringA& PCSTR
szFormat, ...) void _cdecl
Format(PCSTR szFormat);
DESCRIPTION: This function
does sprintf/wsprintf style
formatting on CStdStringA
objects. It looks a lot like MFC's
CString::Format. Some people
might even call this identical.
Fortunately, these people are

now dead. PARAMETERS: nld
- ID of string resource holding
the format string szFormat - a
PCSTR holding the format
specifiers argList - a va_list
holding the arguments for the
format specifiers. RETURN
VALUE: None. --------==-==------
-------------- formatting (using
wsprintf style formatting)

Format (CT*) | public: param: szFmt [CT* - inout]
void
public: param: szFmt [CT* - inout]
AppendFormat | void
(CT)
public: param: szFmt [CT* - inout]
AppendFormat | void param: argList [va_list - in]
V (CT*,
va_list) an efficient way to add formatted
characters to the string. You
may only add up to
STD_BUF_SIZE characters at a
time, though
FormatV public: param: szFormat [CT* - inout]
(CT*, va_list) | void param: argList [va_list - in]

FUNCTION: FormatV void
FormatV(PCSTR szFormat,
va_list, argList);
DESCRIPTION: This function
formats the string with sprintf
style format-specs. It makes a
general guess at required buffer
size and then tries successively
larger buffers until it finds one
big enough or a threshold
(MAX_FMT_TRIES) is
exceeded. PARAMETERS:
szFormat - a PCSTR holding the
format of the output argL.ist - a
Microsoft specific va_list for
variable argument lists

329

RETURN VALUE: --------------
public | =m-mmmm e
AllocSysStrin | query: | =--=-mmmmmmmmm e
g() BSTR CString Facade Functions: The
following methods are intended
to allow you to use this class as a
drop-in replacement for CString.
Collate public param: szThat [PCMYSTR - in
(PCMYSTR) query:int |]
public param: szThat [PCMYSTR - in
CollateNoCase | query:int |]
(PCMYSTR)
Compare public param: szThat [PCMYSTR - in
(PCMYSTR) query: int |]
public param: szThat [PCMYSTR - in
CompareNoCa | query:int |]
se (PCMYSTR)
Delete (int, public: param: nldx [int - in]
int) int param: nCount [int - in]
Empty () public:
void
Find (CT) public param: ch[CT -in]
query: int
Find public param: szSub [PCMYSTR - in]
(PCMYSTR) query: int
Find (CT, int) | public param: ch [CT -in]
query: int | param: nStart [int - in]
Find public param: szSub [PCMYSTR - in]
(PCMYSTR, query: int | param: nStart [int - in]
int)
FindOneOf public param: szCharSet [PCMYSTR -
(PCMYSTR) query:int | in]
public: param: szFormat [PCMYSTR -
FormatMessag | void in]

e (PCMYSTR)

330

public: param: nFormatld [UINT - in]
FormatMessag | void
e (UINT)
GetAt (int) public param: nldx [int-in]
query:
O L e
GetXXXX -- Direct access to
character buffer --------------------
GetBuffer public: param: nMinLen [int - in]
(int) CT*
public: param: nLen [int-in]
GetBufferSetL | CT*
ength (int)
GetLength () | public GetLength() -- MFC docs say
query: int | this is the # of BYTES but in
truth it is the number of
CHARACTERS (chars or
wechar_ts)
Insert (int, public: param: nldx [int-in]
CT) int param: ch [CT -in]
Insert (int, public: param: nldx [int-in]
PCMYSTR) int param: sz [PCMYSTR - in]
ISEmpty () public
query:
bool
Left (int) public param: nCount [int - in]
query:
MYTYPE
LoadString public: param: nld [UINT -in]
(UINT) bool
MakeLower () | public:
void
MakeReverse | public:
0 void
MakeUpper () | public:
void
Mid (int) public param: nFirst [int-in]
query:

MYTYPE

331

Mid (int, int) | public param: nFirst [int - in]

query: param: nCount [int - in]
MYTYPE

ReleaseBuffer | public: param: nNewLen [int-in]

(int) void

Remove (CT) | public: param: ch[CT -in]

int

Replace (CT, | public: param: chOId [CT -in]

CT) int param: chNew [CT -in]

Replace public: param: szOld [PCMYSTR - in]

(PCMYSTR, int param: szNew [PCMYSTR - in

PCMYSTR)]

ReverseFind | public param: ch [CT -in]

(CT) query: int

ReverseFind | public param: szFind [PCMYSTR - in

(PCMYSTR, query:int |]

MYSIZE) param: pos [MYSIZE - in]
ReverseFind overload that's not
in CString but might be useful

Right (int) public param: nCount [int - in]

query:
MYTYPE

SetAt (int, public: param: nindex [int - in]

CT) void param: ch [CT -in]

SetSysString | public param: pbstr [BSTR* - inout]

(BSTR*) query:

BSTR
public param: szCharSet [PCMYSTR -

SpanExcludin | query: in]

g (PCMYSTR) | MYTYPE

Spanincluding | public param: szCharSet [PCMYSTR -

(PCMYSTR) query: in]

MYTYPE
AnsiToOem public: CString's OemToAnsi and
0 void AnsiToOem functions are

available only in Unicode builds.
However since we're a template
we also need a runtime check of
CT and a reinterpret_cast to
account for the fact that

332

CStdStringW gets instantiated
even in non-Unicode builds.

OemToAnNsi public:
0 void
Trim () public: | =--mmmm e
MYTYPE | ----------mmmmmmm oo Trim
& and its variants ---------------------
TrimLeft () public:
MYTYPE
&
TrimLeft (CT) | public: param: tTrim [CT - in]
MYTYPE
&
TrimLeft public: param: szTrimChars [
(PCMYSTR) MYTYPE | PCMYSTR -in]
&
TrimRight () | public:
MYTYPE
&
TrimRight public: param: tTrim [CT - in]
(o3)) MYTYPE
&
TrimRight public: param: szTrimChars [
(PCMYSTR) MYTYPE | PCMYSTR -in]
&
FreeExtra () public:
void
operator [] public: param: nldx [int-in]
(int) CT&
Array-indexing operators.
Required because we defined an
implicit cast to operator const
CT* (Thanks to Julian Selman
for pointing this out)
operator [] public param: nldx [int-in]
(int) const
query:
CT&
operator [] public: param: nldx [unsigned int - in]
(unsigned int) | CT&
operator [] public param: nldx [unsigned int - in]
(unsigned int) | const

333

query:
CT&

operatorconst | public

CT*() query:

B-12231111.2

Type:
Package:

l1terator Methods

llterator

public abstract «interface» Class
Utility Includes

Method

Type

Notes

Ilterator ()

public:

firstEntry ()

((pure»
public

abstract:

T

isDone ()

«pure»
public

abstract:

bool

lastEntry ()

((pure»
public

abstract:

T

virtual T previousEntry() = 0;
virtual T nextEntry() = 0;

numEntries ()

((pl,ll'e})
public

abstract:

int

virtual bool hasNextEntry() = 0;
virtual bool hasPreviousEntry()
= O,

resetlterator ()

«pure»
public

abstract:

void

currentEntry

0

((pure))
public

abstract:

T

iterateForward

0

«pure»
public

abstract:

void

334

B-1.2231.1.1.1.3 VectorBasedlteratorTemplateClass

Type: public Class
Extends: llterator.
Package: Utility Includes

VectorBasedlteratorTemplateClass Attributes

Attribute Type Notes

m_vVector private :
std::vect
or<T>

m_ Iterator private :
std::vect
or<T>

VectorBasedlteratorTemplateClass Methods

Method Type Notes
public:
VectorBasedIt
eratorTemplat
eClass ()
AttachVector | public: param: v [std::vector<T>* -
(std::vector<T | void inout]
>*)
firstEntry () public
abstract:
T
previousEntry | public
0 abstract:
T
nextentry () public
abstract:
T
lastEntry () public
abstract:
T
numEntries () | public
abstract:
int

335

336

B - 1.2.3 Dynamic View

B-1231

This package contains all use cases that are related to initailizing the game system.

This diagram shows the use cases involved in initializing the prototype.

B-123111111

Type:
Package:

Initialize

Initialize

0

(from Garme Analysis - Use Case and Dynanic Vie

Jeff Plummer

1
Crea 1/11/2004 8:28:46 PM
Updated: 11/8/2004 3:47:42 PM

this architecture. It ismerely a simple implementation

The simple design is NOT presented as THE DESIGN TO USE for
is architect of this
architecture.

lude
(from Not Implemented in Demo V1.0)
de»
(trom Not Implemented in Demo V1.0)
Initialize Audio
includer System

(from Not Inplemented in Demo V1.0)

(from Not Inplemented in Demo V1.0)

Not Implemented

Figure 138 : Initialize

Initialize Al2 System

public UseCase
Initialize

ersion 1.0 of the Prototype

337

This diagram shows the sequence of events at the component level required to

Game System

Al System 2

/ICreate

The simple design isNOT presented as THE DESIGN TO USE for
this architecture. Itismerely a simple implementation of this
architecture.

Name:
Author:
Version:
Created:
Updated

Design: Initialize Al2 System (Component Sequence)

Jeff Plumm
1.0

er

11/8/2004 9:12:53 AM
:11/8/2004 9:17:20 AM

implement the "Initialize Al2 System" use case.

Figure 139 : Design: Initialize Al2 System (Component Sequence)

Design: Initialize Al2 System (Component Sequence) Messages

Messag | From To Notes

I |e Object | Object

D

1 | /ICreate | Game Al Create an instance of the

System | System | Al2 System.
2

2 | [Nnitiali | Game Al Connect the object
zeand | System | System | system, and perform any
Connec 2 necessary initialization.

338

t Object
System

Design: Initialize Al12 System (Class-Interface Sequence) Messages

Figure 140 : Design: Initialize Al2 System (Class-Interface Sequence)

ICDemoApplication

Root()

Root «interface» CAI2System
IAI2System

>

ystem*:= createAl2System (pObjectS sl‘em)

CAI2System()

§
nectobj tSystem)

co i
i
i
conngctObjectSystem (objectSystem)
L T
| | |
i i i

architecture.

The simple design is NOT presented as THE DESIGN TO USE for
this architecture. Itismerely a simple implementation of this

Name: Design: Initialize Al2 System (Class-Interface Sequence)
Author: Jeff Plummer

Version: 1.0

Created 11/8/2004 9:17:40 AM
Updated: 11/8/2004 9:28:35 AM

Messag | From To Notes

Il |e Object | Object

D

1 | Root() | CDemo | Root Create an instance of the

Applica only exported class in the
tion Al system.

2 | CAI2Sy | Root CAI2Sy | The root class in turn
stem() stem creates and Al system

object, and returns.

3 | createA | CDemo | Root Create the Al System by
12Syste | Applica connecting the object
m(lAI2 | tion component to the Al
ObjectS Component.
ystem*)

4 | connect | Root IAI2Sys | Interface - Connect the

339

340

ObjectS tem object component to the
ystem(l Al component.

Al20bj

ectSyst

em*)

5 | connect | IAI2Sys | CAI2Sy | Connect the object
ObjectS | tem stem component to the Al
ystem(l component.
Al20bj
ectSyst
em¥)

B-1.2.3.1.1.1.1.1.2 Initialize Al System

Type: public UseCase
Package: Initialize

This diagram shows the sequence of events at the component level required to

Game System

Artificial Intelligence

/ICreate

/Nnitialize Al System

"

The simple design isNOT presented as THE DESIGN TO USE for
this architecture. Itismerely a simple implementation of this
architecture.

Name:
Author:
Version:
Created

Design: Initialize Al System (Component Sequence)

Jeff Plummer

1.0
:1/11/2004

Updated: 11/8/2004

8:56:41 PM
9:31:11 AM

implement the "Initialize Al System™ use case.

Figure 141 : Design: Initialize Al System (Component Sequence)

Design: Initialize Al System (Component Sequence) Messages

Messag | From To Notes
Il |e Object | Object
D
1 | /ICreate | Game Artificia | Create an instance of the
System | | Al system.
Intellige
nce
2 | [Nnitiali | Game Artificia | Initialize the Al system
ze Al System | | and connect it to the
System Intellige | object component.
nce

341

Design: Initialize Al System (Class-Interface Sequence) Messages

This diagram shows the sequence of events at the class/interface level required to

feoemoapplicatior]

Root «interface» CAISystem
1AISystem

Root()

CAlgystem()

{te])

nectObjectSystem (objectSystgm

architecture.

this architecture,

The simple design is NOT presented as THE DESIGN TO USE for
Itismerely a simple implementation of this

Name Design: Initialize Al System (Class-interface Sequence)
Author: Jeff Plummer

Version: 1.0

Created: 2/7/2004 6:10:35 PM
Updated: 11/8/2004 9:23:54 AM

implement the "Initialize Al System™ use case.

Figure 142 : Design: Initialize Al System (Class-Interface Sequence)

Messag | From To Notes

Il |e Object | Object

D

1 | Root() | CDemo | Root Create an instance of the

Applica only exported class in the
tion Al system.

2 | CAISys | Root CAISys | The root class in turn
tem() tem creates and Al system

object, and returns.

3 | createA | CDemo | Root Create the Al System by
ISystem | Applica connecting the object
(IA1Obj | tion component to the Al
ectSyst Component.
em¥)

4 | connect | Root IAISyst | Interface - Connect the
ObjectS em object component to the
ystem(l Al component.

AlObje

342

343

ctSyste
m*)

5 | connect
ObjectS
ystem(l

AlObje
ctSyste

m*)

IAISyst
em

CAISys | Connect the object
tem component to the Al
component.

B-12311.11.1.3
public UseCase

Type:
Package:

Initialize

Initialize Graphics 3D System

Game System Graphics 3D System

/ICreate

o

//Init and Connect Graphics 3D System

/ILoad Graphics 3D Reources

The simple design isNOT presented as THE DESIGN TO USE for
thisarchitecture. Itismerely a simple implementation of this
architecture.

Name:
Author:
Version:
Created:
Updated:

Design: Initialize Graphics 3D System (Component Sequence)
Jeff Plummer

1.0

11/8/2004 9:40:36 AM

11/8/2004 12:11:57 PM

Figure 143 : Design: Initialize Graphics 3D System (Component Sequence)

344

Design: Initialize Graphics 3D System (Component Sequence) Messages

Messag | From To Notes
I |e Object | Object
D
1 | //Create | Game Graphic | Create an instance of the
System |s3D graphics 3D system.
System
2 | [nit Game Graphic | Initialize the graphics 3D
and System |s3D system and connect it to
Connec System | the object system.
t
Graphic
s3D
System
3 | //[Load | Graphic | Graphic | Load up any graphics
Graphic | s 3D s3D resources you need.
s3D System | System
Reourc
es

DemoApplicatio

Root(resource ConfigFile)

«nterface»
\Graphics3DSysten|

(CGraphics3DSystem|

‘ Root ‘

Verson: 1.0
Created: 11/8/2004 9:46:13 AM
Updated: 11/9/2004 1:52:05 PM

R

Figure 144 : Design: Initialize Graphics 3D System (Class-Interface Sequence)

Design: Initialize Graphics 3D System (Class-Interface Sequence) Messages

| Messag | From

| To

| Notes |

I |e Object | Object

D

1 | Root(st | CDemo | Root Create an instance of the
d::strin | Applica only exported class in the
g&) tion Graphics3D system.

2 | CGraph | Root CGraph | The root class in turn
ics3DS ics3DSy | creates and Graphics 3D
ystem(P stem system object, and
rogram returns.
mingUt
ilitiesLi
brary::S
tring&)

3 | setupRe | CGraph | CGraph | Load up graphic resource
sources | ics3DSy | ics3DSy | files (meshes, textures,
(Progra | stem stem etc.)
mming
Utilities
Library:

:String
&)

4 | createG | CDemo | Root Create the Graphics3D
raphics | Applica System by connecting the
3DSyst | tion object component to the
em(IGr Graphics3D Component.
aphics3
DObjec
tSystem
*,int,
int, int,
bool)

5 | gs3dCo | Root IGraphi | Interface - Setup the
nfigure cs3DSy | graphics window settings.
AndSta stem
rtGraph
ics3DS
ystem(i
nt, int,
int,
bool)

6 | gs3dCo | IGraphi | CGraph | Implementation - Setup
nfigure | cs3DSy | ics3DSy | the graphics window
AndSta | stem stem settings.
rtGraph

ics3DS

345

ystem(i
nt, int,
int,
bool)

7 | gs3dCo
nnectO
bject3D
System(
IGraphi
cs3DOb
jectSyst
em*)

Root

IGraphi
cs3DSy
stem

Interface - Connect the
Object component to the

Graphics 3D component.

8 | gs3dCo
nnectO
bject3D
System(
IGraphi
cs3DOb
jectSyst
em*)

IGraphi
cs3DSy
stem

CGraph
ics3DSy
stem

Implementation -
Connect the Object
component to the

Graphics 3D component.

B-123111114

Type:
Package:

Initialize Graphics System

public UseCase

Initialize

346

Game System

347

Graphics 3D System

lICreate

/

/lInit Graphics System

y

/ILoad up graphics resources

The simple design is NOT presented as THE DESIGN TO USE for
this architecture. Itismerely a simple implementation of this
architecture.

Name:
Author:
Version:
Created:
Updated:

Design: Initialize Graphics System - (Component Sequence)

Jeff Plummer
1.0

1/11/2004 8:57:37 PM
11/8/2004 9:45:10 AM

Figure 145 : Design: Initialize Graphics System - (Component Sequence)

Design: Initialize Graphics System - (Component Sequence) Messages

Messag | From To Notes

I |e Object | Object

D

1 | //Create | Game Graphic | Create an instance of the

System | s3D graphics system.
System

2 | nit Game Graphic | Initialize the graphics
Graphic | System |s3D system and connect it to
S System | the object system.
System

3 | //[Load | Graphic | Graphic | Load up any graphics
up s 3D s3D resources you need.
graphic | System | System
S
resourc
es

DemoApplicatio

348

«interface»
IGraphicsSystem

fullScreen)

ySize bit
fullScreen) " J
Ci

ize.bit
fullScreen) g8

SC 1 1System)

gsCorjnpctobjectSystem (objgctdystem)

s et

The simple design is NOT presented as THE DESIGN TO USE for
this architecture. It is merely a simple implementation of this
e

1.0
11/8/2004 10
ated: 11/8/2004 10:

ialize Graphics System (ClassInterface Sequence)

22:18 AM
42:30 AM

Figure 146 : Design: Initialize Graphics System (Class-Interface Sequence)

Design: Initialize Graphics System (Class-Interface Sequence) Messages

Messag | From To Notes

Il |e Object | Object

D

1 | Root(st | CDemo | Root Create an instance of the
d::strin | Applica only exported class in the
g&) tion Graphics2D system.

2 | CGraph | Root CGraph | The root class in turn
icsSyste icsSyste | creates and Graphics 2D
m(Prog m system object, and
rammin returns.
gUtiliti
esLibra
ry::Stri
ng&)

3 | CGraph | CGraph | CGraph | Create an instance of the
icsReso | icsSyste | icsReso | singleton graphics

urceMa | m urceMa | resource manager.
nager() nager

4 | addArc | CGraph | CGraph | Based on the config file,
hiveRes | icsSyste | icsReso | add list of file extensions
ourceE | m urceMa | contain graphics
xtensio nager resources.
n(String
&)

5 | addExte | CGraph | CGraph | Based on the config file,
nsionin | icsSyste | icsReso | add list of file extensions
Archive | m urceMa | in the resource files are
ToLoad nager graphics resources.
(String
&)

6 | addArc | CGraph | CGraph | Based on the config file,
hiveRes | icsSyste | icsReso | add list of directories
ourceL |m urceMa | contain the resource files.
ocation(nager
String&

)

7 | loadGra | CGraph | CGraph | Load the graphics
phicsRe | icsSyste | icsReso | resources
sources | m urceMa
0 nager

8 | createG | CDemo | Root Create the graphics
raphics | Applica system and connect it to
System(| tion the object system.
IGraphi
csObjec
tSystem
*.int,
int, int,
bool)

9 | gsConfi | Root IGraphi | Interface - Configure the
gureAn csSyste | graphics system.
dStartG m
raphics
System(
int, int,
int,
bool)

1 | gsConfi | IGraphi | CGraph | Implementation -

0 | gureAn | csSyste | icsSyste | Configure the graphics
dStartG | m m system.

raphics

349

System(
int, int,
int,
bool)

-

gsConn
1 | ectObje
ctSyste
m(IGra
phicsO
bjectSy
stem*)

Root

IGraphi
csSyste
m

Interface - Connect the
object system to the
graphics system.

gsConn
ectObje
ctSyste
m(lIGra
phicsO
bjectSy
stem*)

N -

IGraphi
csSyste
m

CGraph
icsSyste
m

Implementation -
Connect the object
system to the graphics
system.

B-1.231.1.1.1.15
public UseCase

Type:
Package:

Initialize

Initialize Object System

350

Design: Initialize Object System - (Component Sequence) Messages

Figure 147 : Design: Initialize Object System - (Component Sequence)

Game System

Object & Object
Management System
(Data)

/ICreate

&

INnitialize

>

The simple design isNOT presented as THE DESIGN TO USE for
this architecture. Itismerely a simple implementation of this
architecture.

Name:
Author:
Version:
Created:
Updated

Design: Initialize Object System - (Component Sequence)

Jeff Plummer

1.0

2/9/2004 8:00:51 PM
11/8/2004 10:44:10 AM

Messag | From To Notes
Il |e Object | Object
D
1 | /ICreate | Game Object | Create an instance of the
System | & object system.
Object
Manage
ment
System
(Data)
2 | [Nnitiali | Game Object | Initialize the object
ze System | & system atleast to the point

351

Object | where the other

Manage | components can connect
ment to it.

System

(Data)

Design: Initialize Object System (Class-Interface Sequence) Messages

Figure 148 : Design: Initialize Object System (Class-Interface Sequence)

Messag | From To Notes
Il |e Object | Object
D
1 | Root() | CDemo | Root Create an instance of the
Applica only exported class in the
tion Object system.
2 | CDemo | Root CDemo | Create an instance of the
GameO GameO | object system
bjectSy bjectSys
stem() tem
4 | CDemo | CDemo | CDemo | Create an instance of the
ObjectS | GameO | ObjectS | only scene manager this
ceneMa | bjectSys | ceneMa | demo will use.
nager() |tem nager
5 |initializ | Root CDemo | Create some demo
eObject GameO | objects for us to play

352

353

Scene() bjectSys | around with.
tem

B-1.23.11.1.1.1.6 Initialize Game System

Type: public UseCase
Package: Initialize

Initialize the game system by initializing the object component, and connecting all
peripheral components.

o

d

Figure 149 : Design: Initialize Game System - (Component Sequence)

Design: Initialize Game System - (Component Sequence) Messages

Messag | From To Notes
I |e Object | Object
D
1 | //Create | Game Object | First create the object
System | & component system.
Object
Manage
ment

System
(Data)
2 | [Nnitiali | Game Object | Initialize the component
ze System | & system, atleast to the

Object | point where the other
Manage | components can connect
ment to it.
System
(Data)

3 | //Create | Game Artificia | Create an instance of the

System | | Al system.

Intellige
nce

4 | [Nnitiali | Game Artificia | Connect the Al
zeand | System || component to the object
connect Intellige | component and initialize
to nce it so it's ready to handle
object Al objects.
compon
ent

5 | /[Create | Game Al Create an instance of the

System | System | Al2 system.
2

6 | //Initiali | Game Al Connect the Al2
zeand | System | System | component to the object
Connec 2 component and initialize
t to the it so it's ready to handle
Obiject Al2 objects.

Compo
nent
7 | /[Create | Game Graphic | Create an instance of the
System |s Graphics 2D system.

8 | /nitiali | Game Graphic | Connect the Graphics2D
zeand | System |s component to the object
Connec component and initialize
t to the it so it's ready to handle
Object Graphics2D objects.
Compo
nent

9 | /[Create | Game Graphic | Create an instance of the

System |s3D graphics 3D system.
System

1 | /Initiali | Game Graphic | Connect the Graphics3D

0 |zeand | System |[s3D component to the object
connect System | system and initialize it so

354

to the it's ready to handle
object graphic3D objects.
compon
ent

1 | //Create | Game Audio Create an instance of the

1 System audio system.

1 | /Initiali | Game Audio Connect the Audio

2 |zeand | System component to the object
connect system and initialize it so
to it's ready to handle audio
object objects.
compon
ent

1 | /ICreate | Game Networ | Create an instance of the

3 System | k networking system.

1 | /Initiali | Game Networ | Connect the network

4 |zeand |System |k component to the object
connect systen and initialize it so
to the it's ready to handle
object network objects.
compon
ent

1 | //Create | Game User Create an instance of the

5 System | Interfac | Ul System.

e

1 | /Initiali | Game User Connect the Ul

6 | zeand | System | Interfac | component to the object
connect e system and initialize it so
to it's ready to handle Ul
object objects.
compon
ent

1 | //Create | Game Physics | Create an instance of the

7 System | Compo | Physics system.

nent

1 | /Nnitiali | Game Physics | Connect the Physics

8 |zeand | System | Compo | component to the object
Connec nent component and initialize
tto it so it's ready to handle
Object Physics objects.

System

355

B-1232

Tick

This diagram shows the use cases involved in ticking the prototype.

B-123211111

Type:
Package:

Name: Tick

Author: Jeff Plummer

Version: 1.0

Created: ~ 11/8/2004 11:43:29 AM
Updated: 11/8/2004 3:47:52 PM

System (Ticked,

(from Game Analysis - Use Case an|

d Dynanic View)

thisarchitecture. It ismerely a simple
architecture

The simple design is NOT presented as THE DESIGN TO USE for

implementation of this

LV

Tick Prototype
Game System «include»

«include»

Tick Graphics
System

Tick Graphics 3D
System

,,,,, =
Tick User Interface
System

(from Not Implemented in Demo V1.0)

«include»

Tick Audio System

(from Not Implemented in Demo V1.0)

«include»

Tick Network
System

(from Not Implemented in Demo V1.0)

Tick Physics

«include»

System

U

(from Not Implemented in Demo V1.0)
- @@

Not Implemented in Version 1.0 of the prototype

Figure 150 : Tick

Tick Al System

public UseCase
Tick

356

Tick the artificial intelligence component. Causes objects to bounce around the screen.
Not a very complex Al system.

Game System

/Tick Al

357

Artificial Intelligence Object & Object
Management System
(Data)

/IGet Views of Al Objects
>

/iGet Al Objectsin View

/iCalculate Al For Object

/iGet Object Position

/ICalculate Next Movement

//Set Direction and Position

architecture

The simple design isNOT presented as THE DESIGN TO USE for
this architecture. It ismerely a smple implementation of this

Name: Design: TickAl System - (Component Sequence)

Author: Jeff Plummer

Version: 1.0

Created: 9/3/2003 3:06:34 AM
Updated: 11/8/2004 1:43:12 PM

the game objects to be drawn in 2D as a

This Graphics system when ticked causes T
sprite.

Figure 151 : Design: Tick Al System - (Component Sequence)

Design: Tick Al System - (Component Sequence) Messages

Messag | From To Notes
I |e Object | Object
D
1 | /[Tick Game Artificia | Tick the Al Component
Al System | |
Intellige
nce
2 | 1lGet Artificia | Object | Get an list of Al views to
Views || & process. Views contain
of Al Intellige | Object | some context, and a list
Objects | nce Manage | of objects.
ment
System
(Data)
3 | //Get Al | Artificia | Object | Get the list of Al
Objects | | & processable objects in the
in View | Intellige | Object | view.

nce Manage

ment

System

(Data)
/[Calcul | Artificia | Artificia | The Al component will
ate Al I I then calculate the
For Intellige | Intellige | behavior of the object it
Object | nce nce IS going to process.
//Get Artificia | Object | Get the Position of the
Object || & object
Position | Intellige | Object

nce Manage

ment

System

(Data)
/[Calcul | Artificia | Artificia | Based on it's current
ate I I position, and it's
Next Intellige | Intellige | movement direction,
Movem | nce nce calculate it's next move.
ent
//Set Artificia | Object | Write the position info
Directio | | & back into the object.
n and Intellige | Object
Position | nce Manage

ment

System

(Data)

358

Design: Tick Al System (Class-Interface Sequence) Messages

Figure 152 : Design: Tick Al System (Class-Interface Sequence)

Messag | From To Notes

I |e Object | Object

D

1 | tickAIS | CDemo | IAISyst | Interface - Tick the Al
ystem(f | Applica | em system.
loat) tion

2 | tickAIS | 1AISyst | CAISys | Implementation - Tick
ystem(f | em tem the Al System.
loat)

3 | aisGetA | CAISys | IAIObje | Interface - Get Views of
IViews(| tem ctSyste | Al objects to process...
) m This prototype only

contains one view.

4 | aisGetA | IAIObje | CDemo | Implementation - Get
IViews(| ctSyste | GameO | Views of Al objects to
) m bjectSys | process... This prototype

tem only contains one view.

5 | aisGetA | CAISys | IAIVie | Interface - Get the Al
IViewP | tem w View Processor if it
rocesso exists.
rQ

6 | aisGetA | IAIVie | CDemo | Implementation - Get the
IViewP | w MainVi | Al View Processor if it

359

rocesso ew exists.
rQ)

7 | CAlVie | CAISys | CAlVie | Create a view processor if
wProce | tem wProces | this view does not yet
ssor(1A sor have one - i.e. this is our
IView* first time processing this
) view.

8 | aisAssi | CAlIVie | lAIVie | Interface - Assign the
gnAlVi | wProces | w view processor to the
ewProc | sor view.
essor(l
AlView
Process
or*)

9 | aisAssi | IAIVie | CDemo | Implementation - Assign
gnAlVi | w MainVi | the view processor to the
ewProc ew view.
essor(A
ICompo
nent::|
AlView
Process
or¥)

1 | process | CAISys | CAlVie | Al Process the view

0 | View() |tem wProces

sor

1 | aisGetS | CAlIVie | IAIVie | Interface - Get the

1 |ceneMa | wProces | w Scenemanager (structured
nager() | sor list of objects to process)

1 | aisGetS | IAIVie | CDemo | Implementation - Get the

2 | ceneMa | w MainVi | Scenemanager (structured
nager() ew list of objects to process)

1 | aisGetA | CAlIVie | IAlScen | Interface - Get Ordered

3 | IProces | wProces | eManag | list of objects to process.
sableOb | sor er
jects()

1 | aisGetA | IAIScen | CDemo | Implementation - Get

4 | IProces | eManag | ObjectS | Ordered list of objects to
sableOb | er ceneMa | process.
jects() nager

1 | aisGetA | CAlIVie | IAIProc | Interface - Get the Al

5 | IProces | wProces | essable | object processor
sorObje | sor Object | responsible for
ct() processing this object.

1 |asGetA | IAIProc | CTriang | Implementation - Get the

360

6 | udioPro | essable | leGame | Al object processor
cessorO | Object | Object | responsible for
bject() processing this object.
1 | CAIPro | CAIVie | CAIPro | Create Al Object
7 | cessorO | wProces | cessorO | Processor Object if
bject(l | sor bject necessary.
AlProc
essable
Object*
)
1 | aisAssi | CAIPro | IAIProc | Interface - Assign the
8 | gnAlIPr | cessorO | essable | processor object to the
ocessor | bject Object | game object.
Object(
IAlIProc
essorOb
ject*)
1 | aisAssi | IAIProc | CTriang | Implementation - Assign
9 | gnAlPr |essable |leGame | the processor object to
ocessor | Object | Object | the game object.
Object(
IAIProc
essorOb
ject*)
2 | process | CAlIVie | CAIPro | Perform Al Processing on
0 | AlObje | wProces | cessorO | this object
ct() sor bject
2 | aisGetO | CAIPro | IAIProc | Interface - Get the game
1 | bjectPo | cessorO | essable | object's position.
sition() | bject Object
2 | aisGetO | IAIProc | CTriang | Implementation - Get the
2 | bjectPo | essable | leGame | game object's position.
sition() | Object | Object
2 | /[Calcul | CAIPro | CAIPro
3 | ate new | cessorO | cessorO
position | bject bject
2 | aisSetO | CAIPro | IAIProc | Interface - Set the game
4 | bjectPo | cessorO | essable | object's new position
sition(p | bject Object
oint3f&
)
2 | aisSetO | IAIProc | CTriang | Implementation - Set the
5 | bjectPo | essable | leGame | game object's new
sition(A | Object | Object | position

ICompo

361

nent::po
int3f&)

B-123.211112

Type:
Package:

Tick Al2 System

public UseCase
Tick

362

Tick the artificial intelligence component. Causes objects to rotate. Not a very complex

Al system.

Game System

Al System 2

Object & Object
Management System
(Data)

IITick Al2 System

IiGet views of Al2 objects
>

IIProcess Al2

Name: Design: Tick Al2 System (Component Sequence)
Author: Jeff Plummer

Version: 1.0

Created: 11/8/2004 1:35:05 PM
Updated: 11/8/2004 2:47:17 PM

/IGet AI2 Objectsin View

/ICalculate Al2 Behavior

IiGet Object Orientation

IlUpdate Object Orientation

architecture

The simple design is NOT presented as THE DESIGN TO USE for
this architecture. Itismerely a simple implementation of this

the game objects to be drawn in 2D as a

This Graphics system when ticked causes
sprite.

Figure 153 : Design: Tick Al2 System (Component Sequence)

Design: Tick Al2 System (Component Sequence) Messages

Messag
e

From
Object

To

Object

Notes

I
D
1 | /lTick
Al2
System

Game
System

Al

System

2

Tick the Al2 Component

//Get Al Object | Getan list of Al views to
views System | & process. Views contain
of Al2 |2 Object | some context, and a list
objects Manage | of objects.

ment

System

(Data)
1/Get Al Object | Get the list of Al2
Al2 System | & processable objects in the
Objects | 2 Object | view.
in View Manage

ment

System

(Data)
/[Calcul | Al Al The Al2 component will
ate Al2 | System | System | then calculate the
Behavi |2 2 behavior of the object it
or is going to process.
//Get Al Object | Get the objects
Object | System | & orientation data.
Orientat | 2 Object
ion Manage

ment

System

(Data)
/[Proces | Al Al Rotate the object
sAl2 System | System

2 2

/[Updat | Al Object | Update the object's
e System | & orientation using the new
Object | 2 Object | data.
Orientat Manage
ion ment

System

(Data)

363

Design: Tick Al2 System (Class-Interface Sequence) Messages

Figure 154 : Design: Tick Al2 System (Class-Interface Sequence)

Messag | From To Notes

I |e Object | Object

D

1 | tickAIS Interface - Tick the Al
ystem(f system.
loat)

2 | tickAl2 Implementation - Tick
System(the Al2 System.
float)

3 | ai2sGet Interface - Get Views of
Al2Vie Al2 objects to process...
ws() This prototype only

contains one view.

4 | ai2sGet Implementation - Get
Al2Vie Views of Al2 objects to
ws() process... This prototype

only contains one view.

5 | ai2sAss Interface - Get the Al2
ignAl2 View Processor if it
ViewPr exists.
ocessor

(1AI2Vi

364

ewProc
essor*)

6 | ai2sGet Implementation - Get the
Al2Vie Al2 View Processor if it
wProce exists.
ssor()

7 | CAlVie Create a view processor if
wProce this view does not yet
ssor(1A have one - i.e. this is our
IView* first time processing this
) view.

8 | aisAssi Interface - Assign the
gnAlVi view processor to the
ewProc view.
essor(l
AlView
Process
or¥)

9 | aisAssi Implementation - Assign
gnAlVi the view processor to the
ewProc view.
essor(A
ICompo
nent::1
AlView
Process
or*)

1 | process Al Process the view

0 | View()

1 | aisGetS Interface - Get the

1 | ceneMa Scenemanager (structured
nager() list of objects to process)

1 | aisGetS Implementation - Get the

2 | ceneMa Scenemanager (structured
nager() list of objects to process)

1 | aisGetA Interface - Get Ordered

3 | IProces list of objects to process.
sableOb
jects()

1 | aisGetA Implementation - Get

4 | IProces Ordered list of objects to
sableOb process.
jects()

1 | aisGetA Interface - Get the Al

5 | IProces object processor

365

sorObje responsible for
ct() processing this object.
1 | asGetA Implementation - Get the
6 | udioPro Al object processor
cessorO responsible for
bject() processing this object.
1 | CAIPro Create Al Object
7 | cessorO Processor Object if
bject(l necessary.
AlProc
essable
Object*
)
1 | aisAssi Interface - Assign the
8 | gnAlPr processor object to the
ocessor game object.
Object(
IAlIProc
essorOb
ject*)
1 | aisAssi Implementation - Assign
9 | gnAlPr the processor object to
ocessor the game object.
Object(
IAlIProc
essorOb
ject*)
2 | process Perform Al Processing on
0 | AlObje this object
ctQ)
2 | aisGetO Interface - Get the game
1 | bjectPo object's position.
sition()
2 | aisGetO Implementation - Get the
2 | bjectPo game object's position.
sition()
2 | /ICalcul
3 | ate new
position
2 | aisSetO Interface - Set the game
4 | bjectPo object's new position
sition(p
oint3f&
)
2 | aisSetO Implementation - Set the

366

367

bjectPo

sition(A
ICompo
nent::po

int3f&)

game object's new
position

B-123211113

public UseCase
Tick

Type:
Package:

Tick Graphics 3D System

Draws objects as 3D objects

Game System

Graphics 3D System

Object & Object
Management System
(Data)

IITick Graphics3D System

liGet Views of Graphics3D Objegts

l/Get Graphics3D Obijectsin View |

Process Graphics3D Object

IiGet Graphics3D Data

//Draw Obiject

//lUpdate Screen Coordinates,

Name Design: Tick st
Author: Jeff Plummer

Version: 1.0

10/19/2004 5:05:32 PM
11/8/2004 2:47:17 PM

Created
Updated

sprite.

This Graphics system when ticked causes
the game objects to be drawn in 2D as a

7

The simple design isNOT presented as THE DESIGN TO USE for
thisarchitecture. Itismerely a simple implementation of this
architecture

7

Figure 155 : Design: Tick Graphics3DSystem (Component Sequence)

Design: Tick Graphics3DSystem (Component Sequence) Messages

Messag
e

To Note

Object

From
Object

S

/[Tick | Game Graphic | Tick the Graphics3D
Graphic | System |s3D Component.
s3D System
System
//Get Graphic | Object | Getan list of Graphics3D
Views |s3D & views to process. Views
of System | Object | contain some context, and
Graphic Manage | a list of objects.
s3D ment
Obijects System

(Data)
//Get Graphic | Object | Get the list of
Graphic | s 3D & Graphics3D processable
s3D System | Object | objects in the view.
Objects Manage
in View ment

System

(Data)
Process | Graphic | Graphic
Graphic | s 3D s3D
s3D System | System
Object
//Get Graphic | Object | Get data like position,
Graphic | s3D & graphics resources, etc. to
s3D System | Object | draw.
Data Manage

ment

System

(Data)
/[Draw | Graphic | Graphic
Object |s3D s3D

System | System

/[Updat | Graphic | Object | The graphics3D engine
e s3D & updates screen coordinate
Screen | System | Object | data in case other
Coordin Manage | componentes use that
ates ment data.

System

(Data)

368

Design: Tick Graphics3D System (Class-Interface Sequence) Messages

Figure 156 : Design: Tick Graphics3D System (Class-Interface Sequence)

Messag | From To Notes

I |e Object | Object

D

1 | gs3dTic Interface - Tick the
kGraphi Graphics3D system.
cs3DSy
stem(fl
oat)

2 | gs3dTic Implementation - Tick
kGraphi the Graphics3D System.
cs3DSy
stem(fl
oat)

3 | gs3dGe Interface - Get Views of
tGraphi Graphics3D objects to
csView process... This prototype
s() only contains one view.

4 | gs3dGe Implementation - Get
tGraphi Views of Graphics3D
csView objects to process... This

s()

prototype only contains

369

one view.

gs3dGe
tGraphi
cs3DVi
ewProc
essor()

Interface - Get the
Graphics3D View
Processor if it exists.

gs3dGe
tGraphi
cs3DVi
ewProc
essor()

Implementation - Get the
Graphics3D View
Processor if it exists.

CGraph
ics3DV
iewProc
essor(l
Graphic
s3DVie
w*,
Ogre::V
iewport
*

Ogre::C
amera*,
Ogre::.C
Externa
IScene
Manage
r*)

Create a view processor if
this view does not yet
have one - i.e. this is our
first time processing this
view.

gs3dAs
signGra
phics3
DView
Process
or(IGra
phics3
DView
Process
or*)

Interface - Assign the
view processor to the
view.

gs3dAs
signGra
phics3
DView
Process
or(Grap
hics3D

Implementation - Assign
the view processor to the
view.

370

Compo
nent::l
Graphic
s3DVie
wProce
SSOr*)
1 | process Graphics3D Process the
0 | View() view
1 | gs3dGe Interface - Get the
1 | tScene Scenemanager (structured
Manage list of objects to process)
rQ)
1 | gs3dGe Implementation - Get the
2 | tScene Scenemanager (structured
Manage list of objects to process)
rQ
1 | gs3dGe Interface - Get Ordered
3 | tVisible list of objects to process.
Graphic
s3DObj
ects()
1 | gs3dGe Implementation - Get
4 | tVisible Ordered list of objects to
Graphic process.
s3DObj
ects()
1 | gs3dGe Interface - Get the
5 | tGraphi Graphics3D object
cs3DPr processor responsible for
ocessor processing this object.
Obiject(
)
1 | gs3dGe Implementation - Get the
6 | tGraphi Graphics3D object
cs3DPr processor responsible for
ocessor processing this object.
Object(
1 | CGraph Create Graphics3D
7 | ics3DPr Object Processor Object
ocessor if necessary.
Object(
IGraphi
cs3DPr

ocessab

371

leObjec
t*,
Ogre::.C
Externa
IScene
Manage
r*)

o

gs3dAs
signGra
phics3
DProce
ssorObj
ect(IGr
aphics3
DProce
ssorObj
ect*)

Interface - Assign the
processor object to the
game object.

O -

gs3dAs
signGra
phics3

DProce
ssorObj
ect(Gra
phics3

DComp
onent::l
Graphic
s3DPro
cessorO
bject*)

Implementation - Assign
the processor object to
the game object.

oN

gs3dGe
tGraphi
cs3DRe
sources

0

Interface - Get the
Graphics3D Resource
information required to
draw the object in 3D.

=N

gs3dGe
tGraphi
cs3DRe
sources

0

Implementation - Get the
Graphics3D Resource
information required to
draw the object in 3D.

NN

/ICreate
3D
Entity

Create the entity using
OGREs resource
manager.

w N

process
Graphic

Perform Graphics3D
Processing on this object

372

s3DObj
ect(IGr
aphics3
DCame
ra*,
unsigne
d int)

aisGetO Interface - Get the game
bjectPo object's position.
sition()

EE \S)

gs3dGe Implementation - Get the
t3DObj game object's position.
ectLoca
tion()

a1 N

gs3dGe Interface - Get the game
t3DObj object's orientation
ectOrie
ntation
AsQuat
ernion()

N

gs3dGe Implementation - Get the
t3DObj game object's orientation
ectOrie
ntation

AsQuat
ernion()

~N DN

//Updat Update the OGRE

e graphics entity in the
Graphic processor.

s3D
Data in
process
or

o N

B-1.2321.1.1.14 Tick Graphics System

Type: public UseCase
Package: Tick

Draws objects as 2D sprite

373

Game System Graphics

IITick Graphics System

IiGet Views of Graphics Objects

Object & Object
Management System
(Data)

Name Design: Tick Graphics System (Component Sequence)
Author: Jeff Plummer

Version 1.0

Created: 12/22/2003 11:35:25 PM

Updated 11/8/2004 2:45:36 PM

thisarchitecture. Itis merely a simple implementation of this

The simple design is NOT presented as THE DESIGN TO USE for
architecture

/iGet Graphics Objectsin View

IIProcess Graphics Object

/IDraw Obiject

/lUpdate Screen Coordinates

Get Graphics Data

the game objects to be drawn in 2D as a

This Graphics system when ticked causes T
sprite.

Figure 157 : Design: Tick Graphics System (Component Sequence)

Design: Tick Graphics System (Component Sequence) Messages

Messag | From To Notes

I |e Object | Object

D

1 | /[Tick Game Graphic | Tick the 2D graphics
Graphic | System |s component.
S
System

2 | lIGet Graphic | Object | Get an list of Graphics
Views |s & views to process. Views
of Object | contain some context, and
Graphic Manage | a list of objects.
S ment
Objects System

(Data)

3 | //Get Graphic | Object | Get the list of Graphics
Graphic | s & processable objects in the
S Object | view.
Objects Manage
in View ment

System

(Data)

374

4 | //Proces | Graphic | Graphic
S S S
Graphic
s Object
5 | Get Graphic | Object | Get data like position,
Graphic | s & graphics resources, etc. to
s Data Object | draw.
Manage
ment
System
(Data)
6 | //[Draw | Graphic | Graphic
Object | s S
7 | //Updat | Graphic | Object | The graphics engine
e S & updates screen coordinate
Screen Object | data in case other
Coordin Manage | componentes use that
ates ment data.
System
(Data)

Figure 158 : Design: Tick Graphics System (Class-Interface Sequence)

Design: Tick Graphics System (Class-Interface Sequence) Messages

375

Messag | From To Notes

Il |e Object | Object

D

1 | gsTick Interface - Tick the
Graphic Graphics system.
sSyste
m(float)

2 | gsTick Implementation - Tick
Graphic the Graphics System.
sSyste
m(float)

3 | gsGetG Interface - Get Views of
raphics Graphics objects to
Views() process... This prototype

only contains one view.

4 | gsGetG Implementation - Get
raphics Views of Graphics
Views() objects to process... This

prototype only contains
one view.

5 | gsGetG Interface - Get the
raphics Graphics View Processor
ViewPr if it exists.
ocessor
0

6 | gsGetG Implementation - Get the
raphics Graphics View Processor
ViewPr if it exists.
ocessor
0)

7 | CGraph Create a view processor if
icsView this view does not yet
Process have one - i.e. this is our
or(IGra first time processing this
phicsVi view.
ew™,

SDL_S
urface*
)

8 | gsAssig Interface - Assign the
nGraphi view processor to the
csView view.

Process
or(IGra

phicsVi

376

ewProc
essor*)

9 | gsAssig Implementation - Assign
nGraphi the view processor to the
csView view.

Process
or(Grap
hicsCo
mponen
t::1Grap
hicsVie
wProce
SS0r*)

1 | process Graphics Process the

0 | View() view

1 | gsGetS Interface - Get the

1 | ceneMa Scenemanager (structured
nager() list of objects to process)

1 | gsGetS Implementation - Get the

2 | ceneMa Scenemanager (structured
nager() list of objects to process)

1 | gsGetG Interface - Get Ordered

3 | raphics list of objects to process.
Objects
0

1 | gsGetG Implementation - Get

4 | raphics Ordered list of objects to
Objects process.

0

1 | gsGetG Interface - Get the

5 | raphics Graphics object processor
Process responsible for
orObjec processing this object.
tQ)

1 | gsGetG Implementation - Get the

6 | raphics Graphics object processor
Process responsible for
orObjec processing this object.
tQ)

1 | CGraph Create Graphics Object

7 | icsProc Processor Object if
essorOb necessary.
ject(IPr
ocessab

leGraph

377

icsObje
ct*)
1 | gsAssig Interface - Assign the
8 | nGraphi processor object to the
csProce game object.
ssorObj
ect(IGr
aphicsP
rocesso
rObject
*)
1 | gsAssig Implementation - Assign
9 | nGraphi the processor object to
csProce the game object.
ssorObj
ect(Gra
phicsCo
mponen
t::1Grap
hicsPro
cessorO
bject*)
2 | gsGetG Interface - Get the
0 | raphics Graphics Resource
Resourc information required to
es() draw the object in 2D.
2 | gsGetG Implementation - Get the
1 | raphics Graphics Resource
Resourc information required to
es() draw the object in 2D.
2 | /[Create Create the entity using
2 | 2D SDL to manage sprites.
Sprite
2 | drawGr Perform Graphics
3 | aphicsO Processing on this object
bject()
2 | gsGetw I2DGra | Get the position of the 2D
4 | orldPos phicsOb | object
ition() ject
2 | gsGetW | I12DGra Get the 2D objects
5 | orldPos | phicsOb position in the world
ition() | ject
2 | gsCurre Interface - Get the sprite
6 | ntimage offset in the 2D image

Offsetl

378

379

nResou
rce()

gsGetl Implementation - Get the
mageOf sprite offset in the 2D
fsetInR image

esource

0

~N N

/[Draw Use SDL to blit the sprite
the
object
using
SDL

oo N

B-1.23.21.1.1.15 Tick Prototype Game System

Type: public UseCase
Package: Tick

This design dependent use case represents the process of ticking all the domain-specific
components to create the game behavior.

380

B -1.2.4 Component View

e

Figure 159 : Prototype Component Model

B-124111111 Al System?2

Type: public Component
Package: Component View

This component is the Al2 System DLL that when attached to the object component
performs rotation Al on the objects.

B-1241111.12 Artificial Intelligence

Type: public Component
Package: Component View

This component is the Al System DLL that when attached to the object component
performs movement Al on the objects.

B-1.24111113 Audio

Type: public Component
Package: Component View

This component is the Audio System DLL that when attached to the object component
performs sound processing on the objects.

B-1.24.1.1.1.1.14 Game System

Type: public Component
Package: Component View

381

Represents the master game system EXE file.

B-1.24111115 Graphics

Type: public Component
Package: Component View

This component is the Graphics System DLL that when attached to the object component
draws the objects in 2D.

B-1.24111.1.16 Graphics 3D System

Type: public Component
Implements: 1Graphics3DSystem.
Package: Component View

This component is the Graphics System DLL that when attached to the object component
draws the objects in 3D.

B-124111.117 Network

Type: public Component
Package: Component View

This component is the Network System DLL that when attached to the object component
performs network processing on the objects.

B-1241.1.1.1.18 Object & Object Management System (Data)

Type: public Component
Implements: 1Graphics3DObjectSystem.
Package: Component View

The Game Objects and Object Management System.

B-1.24111.1.1.9 OGRE Graphics Engine

Type: public «external» Component
Package: Component View

The OGRE (www.ogre3d.org) graphics engine was used in the prototype, and actually
provides some proof that it is not difficult to integrate an existing graphics engine into
this architecture.

382

B-124.1.1.1.1.1.10 Physics Component

Type: public Component
Package: Component View

This component is the Physics System DLL that when attached to the object component
performs physics calculations on the objects.

B-124.1.1.1.1.1.11 User Interface

Type: public Component
Package: Component View

This component is the User Interface System DLL that when attached to the object
component allows Ul listening objects to exist.

	LIST OF FIGURES
	INTRODUCTION
	Motivation
	The current Approach and Its Shortcomings
	The Migration to COTS
	Not a Game Engine

	High Level Objectives and Goals
	Architectural Requirement: Support COTS-Based Development
	Architectural Requirement: Better Knowledge Localization
	Architectural Requirement: Flexibility / Modifiability
	Architectural Requirement: Expandability / Maintainability
	Performance and Other Quality Attributes are NOT Requirement

	Contributions

	LITERATURE REVIEW
	Current State of Game Development in Literature
	The Latest Book Trends in Game Development
	The First and Only Real Attempt at Game Architecture
	Software Architecture

	THESIS METHODOLOGY
	Analysis of Games as Software Systems
	Selecting Games to Analyze
	Existing Game Genres
	Further Refinement – Isolate Important Properties

	The Selected Games for Analysis
	Analyzing the Games
	Analyzing Starcraft™ Requirements with Use-Cases
	Understanding the Sub-System Interaction

	Identify Candidate Architectural Styles
	Layered
	Data-Centered
	Independent Components
	Data Flow
	System of Systems

	Architecture Design
	Choosing a Topology
	Layered Architectural Style
	Data Flow Architectural Style
	Data Centered Architectural Style
	Independent Components Architectural Style
	System of Systems

	Making the Topology Choice
	Choosing a Style of Communication
	Repository
	Blackboard
	Making the Communications Choice

	Synchronicity
	Synchrous at the Object Level
	Batch Synchronization
	Hybrid Synchronization
	Making the Synchronicity Choice

	The Idea – System of Systems Philosophy

	THE PROPOSED ARCHITECTURE (and a Simple Design)
	The Data-Centered System of Systems Topology
	Architecture – System Communication
	Architecture – Synchronization
	Architecture – Distributed Synchronization
	Architectural Features / Architectural Requirements
	Support for COTS-Based Development
	Better Knowledge Localization
	System Flexibility / Modifiability
	System Expandability / Maintainability

	A Simple Design
	Potential Design: System Communication / Interaction
	Potential Design Cont.: Attaching Systems at Compile Time
	Potential Design Cont.: System Communication
	Potential Design Cont.: Observer Pattern to Achieve Localiza

	ARCHITECTURE VALIDATION
	Taking the Reference Games to the Design Level
	Applying the Design
	Evaluating the results of applying the design

	Developing a Prototype
	Prototype High Level Design
	Component Selection
	The Object Data

	Prototype Detailed Design
	Component Interfaces
	Domain-specific System – Object System Interactions
	Connecting Domain System to the Object System
	“Ticking” the Domain-specific System

	Prototype Evaluation

	RESULTS
	Summary
	Conclusions – Meeting The Architectural Requirements
	Support COTS-Based Development
	Better Knowledge Localization
	Flexibility / Modifiability
	Expandability / Maintainability
	The Performance Concern

	Important Considerations
	Design is Critical
	Central Object Management System = VERY different
	Think about the Data

	Future Research
	Can this Architecture Work for Massively Multiplayer Online
	Design: Domain-specific Component Connection to the Object M
	Design: No More Interfaces to Access Object Data (If perform
	Architecture Inside the Components
	What is messaging overhead for independent component style
	The Architectural Tradeoff Analysis Method

	Works Cited
	APPENDIX A - GAME ANALYSES
	Game Analysis
	Game Analysis - Use Case and Dynamic View
	Player
	System
	System (Ticked)

	Modules
	Game Data
	Game Logic
	Technology Modules
	AI
	Audio
	Graphics
	Network
	Physics
	User Interface

	Starcraft
	Use Cases
	Startup
	Select Multi-Player Game
	Select Single Player Game

	Options Menu
	End Mission
	Get Help
	Get Mission Objective
	Load Game
	Modify Options
	Return To Game
	Save Game

	Play Starcraft
	Attack Unit
	Change Map Display Area
	Gather Resources
	Give unit an order
	Move to Location
	Research Technology
	Select Object
	Building construct Unit
	Give Building an order
	Hold Position
	Manipulate Object Resources
	Manipulate Player Resources
	Modify Doable Commands
	Patrol Location
	Stop Movement
	Unit Construct Building

	Design: Tick Starcraft System
	Tick Starcraft Game System
	Tick AI System
	Tick AI System
	Navigate Map - Pathfinding
	Attack
	Calculate AI State
	Calculate Next Movement
	Calculate unit action
	Execute Map Watcher

	Tick Audio System
	Tick Audio System

	Tick Graphics System
	:IGraphicsObjectSystem
	Update View Object
	Tick Graphics System
	Update View
	Update Main View
	Draw Main View Objects
	Draw Main View Terrain
	Update All Views
	Update Command Button View
	Update Mini Map View
	Update Protrait View
	Update Status View

	Tick Network Component
	Broadcast local objects TO server
	Tick Network System
	Update objects FROM server

	Tick Object Component
	Tick Object System / Game Logic
	Update Commander Object
	Update Controlled Object

	Tick UI Component
	Process Keyboard
	Process Mouse
	Tick User Interface

	Unreal Tournament
	Use Cases
	Play Unreal Tournament
	Collect Ammo
	Collect Health
	Collect Item
	Collect Weapon
	Jump
	Move
	Rotate
	Shoot

	Design: Tick
	System (Ticked)
	Tick Physics Component
	Tick AI System
	Tick Audio Component
	Tick Graphics 3D Component
	Note
	Tick Network Component
	Tick Unreal Tournament Game System

	Tick AI System
	Tick Unreal Tournament Game System
	System (Ticked)
	Note
	Tick AI System
	Tick Player
	Tick Projectile

	Tick Audio Component
	Tick Audio Component

	Tick Graphics 3D Component
	Tick Graphics 3D Component
	Update All Graphical Views
	Update Character Status Overlay
	Update GUI Overlays
	Update Main Play View
	Update Team Score Overlay
	Update Weapon/Ammo Overlay

	Tick Network Component
	Broadcast Local Objects TO Server
	Tick Network Component
	Update Local Objects FROM Server

	Tick Object Component
	Tick Object Component

	Tick Physics Component
	Calculate Collision Reaction
	Detect Collisions
	Tick Physics Component

	APPENDIX B – PROTOTYPE DESIGN
	Prototype
	Analysis View
	Logical Architecture
	Object Interfaces
	GameObject
	AI2Object
	IAIObject
	IGraphics2DObject
	IGraphics3DObject

	Logical View
	Programming Utilities Library
	Systems
	AI System
	AI Component - Implementation
	AI Exported Classes
	Root

	Private AI System Implementation
	CAISystem
	CAIProcessorObject
	CAIViewProcessor

	AI Component - Interfaces
	AI Interfaces Object System Can Use To Communicate With AI S
	IAIProcessorObject
	IAISystem
	IAIViewProcessor

	AI Interfaces The Object System Implements
	IAICapableObject
	IAIObjectSystem
	IAIProcessableObject
	IAISceneManager
	IAIView

	AI2System
	AI2 Component - Implementation
	AI2 Exported Classes
	Root

	Private AI2 System Implementation
	CAI2System
	CAI2ProcessorObject
	CAI2ViewProcessor

	AI2 Component - Interfaces
	AI2 Interfaces Object System Can Use To Communicate With AI2
	IAI2ProcessorObject
	IAI2System
	IAI2ViewProcessor

	AI2 Interfaces The Object System Implements
	IAI2CapableObject
	IAI2ObjectSystem
	IAI2ProcessableObject
	IAI2SceneManager
	IAI2View

	Game Object System
	Game Object Component - Implementation
	Game Object Component Exported Classes
	Root

	Private Game Object Component Implementation
	CDemoCamera
	CDemoGameObjectSystem
	CDemoMainView
	CDemoObject
	CDemoObjectSceneManager
	CDemoViewBaseClass
	CTriangleGameObject

	Data Structures
	demoPoint2i
	demoPoint3f
	demoRect

	Game Object Component - Interfaces
	IObjectSystem

	Component Attachings

	Game System
	CDemoApplication

	Graphic 3D System
	Graphics3DComponent - Implementation
	Exported Classes
	Root

	Private Graphics3D System Implementation
	CGraphics3DProcessorObject
	CGraphics3DSystem
	CGraphics3DViewProcessor

	Graphics3DComponent - Interfaces
	Interfaces the Object System can use to communicate with the
	IGraphics3DProcessorObject
	IGraphics3DSystem
	IGraphics3DViewProcessor

	Interfaces The Object System Implements
	IGraphics3DCamera
	IGraphics3DCapableObject
	IGraphics3DObjectSystem
	IGraphics3DProcessableObject
	IGraphics3DSceneManager
	IGraphics3DView

	Graphics 2D System
	Graphics Component - Implementation
	Exported Classes
	Root

	Private Graphics System Implementation
	CGraphicsProcessorObject
	CGraphicsSystem
	CGraphicsViewProcessor

	Graphics Component - Interfaces
	Interfaces Object System Can Use To Communicate With Graphic
	IGraphicsProcessorObject
	IGraphicsSystem

	Interfaces The Object System Implements
	I2DGraphicsCamera
	I2DGraphicsObject
	I2DSpriteGraphicsObject
	IGraphicsCamera
	IGraphicsCapableObject
	IGraphicsObjectIterator
	IGraphicsObjectSystem
	IGraphicsSceneManager
	IGraphicsView
	IGraphicsViewIterator
	IProcessableGraphicsObject

	Utility Includes
	CStdStr
	IIterator
	VectorBasedIteratorTemplateClass

	Dynamic View
	Initialize
	Initialize AI2 System
	Initialize AI System
	Initialize Graphics 3D System
	Initialize Graphics System
	Initialize Object System
	Initialize Game System

	Tick
	Tick AI System
	Tick AI2 System
	Tick Graphics 3D System
	Tick Graphics System
	Tick Prototype Game System

	Component View
	AI System 2
	Artificial Intelligence
	Audio
	Game System
	Graphics
	Graphics 3D System
	Network
	Object & Object Management System (Data)
	OGRE Graphics Engine
	Physics Component
	User Interface

