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Abstract

Computers have developed to the point where searching through a large set of data to find an 

optimum value can be done in a matter of seconds.  However, there are still many domains (primarily 

in the realm of game theory) that are too complex to search through with brute force in a reasonable 

amount of time, and so heuristic searches have been developed to reduce the run time of such searches. 

That being said, some domains require very complex heuristics in order to be effective.  The purpose of 

this study was to see if a computer could improve its heuristic as it runs more searches.  The domain 

used was the game of chess, which has a very high complexity.  The heuristic, or evaluation function, 

of a chess program needs to be able to accurately quantify the strength of a player’s position for any 

instance of the board.  Creating such an evaluation function would be very difficult because there are so 

many factors that go into determining the strength of a position: the relative value of pieces, the 

importance of controlling the center, the ability to attack the enemy’s stronger pieces – something that 

chess masters spend entire lives trying to figure out.  This study looked to see if it was possible for a 

computer program to “learn” an effective evaluation function by playing many games, analyzing the 

results, and modifying its evaluation function accordingly.

Introduction

Heuristic searches (such as the A*) in general can be applied to practically any domain that 

somebody would want to search through.  The actual heuristic functions used, however, are extremely 

domain-specific.  Some problems require very simple heuristics (or estimations that allow a program to 

effectively and efficiently reach an optimum solution), such as a problem whose domain involves 

points on a flat surface that are connected by paths, in which the shortest path from point A to point B is 

desired.  Such a problem’s heuristic would simply be the distance of a hypothetical straight path from 

the current point on the path to point B.  By adding this estimation to the total distance traveled along a 

path thus far and comparing it to the total distances and estimated remaining distances of other possible 



paths, a search program can find the optimum solution to this problem quite easily.  This is an example 

of a domain with a very simple heuristic to calculate.  However, many problems that researchers are 

interested in nowadays have much more complex domains, and therefore much more complex 

heuristics.  The age-old game of chess is one such problem.

In 1997, IBM created a chess program called “Deep Blue” that beat the world champion chess 

player at the time.  Deep Blue used a “brute-force” approach to chess.  It would look at every possible 

move, and then every possible move that could result after each of those original moves, and each third 

possible move, and so on and so on until every possible move and every possible game had been 

looked at.  And it would calculate all of this before it even made the first move.  Each time it would 

search all the possibilities and make the move that would give the highest chance of checkmate down 

the road.  Even a chess master was no match for Deep Blue.  Most chess masters can look about 10-12 

moves into the future, but no human has the brain power to play out entire games in their head before 

making each move.  However, IBM needed a state of the art supercomputer to run this program at a 

reasonable speed.  Running it on anything less than a supercomputer would take days or even weeks for 

the game to finish.  On average, there are about 30 moves that a player can make at any given time, and 

the average game lasts around 50 turns (each turn containing one white and one black move).  This 

means that on the first turn, Deep Blue’s brute-force algorithm would have to search through 30100 

moves, or about 5.15 x 10147 moves.  On the second turn it would have to search through about 3098 

moves, the third 3096 moves, and so on and so forth.  It is quite clear that using such a method on a 

machine other than a supercomputer would simply be impractical.

It is possible to write a computer chess program that is still effective without using the brute-

force method.  By looking only, say, two or three moves into the future rather than 50 moves or more, a 

program can still make educated decisions about good moves to make if it has some way of estimating 

how strong a projected position would be.  This is where a heuristic, or evaluation function as it is more 

commonly called in the context of board games like chess, comes in handy.  By looking a few moves 



into the future, applying the evaluation function to each possible board, and choosing a move based on 

which projected board has the highest strength of position, then a computer can still be an effective 

chess player, while at the same time dramatically cutting down the number of required calculations.

It sounds simple enough, but once you actually try to create such an evaluation function, it 

becomes much, much harder.  How do you effectively evaluate a position?  Do you just look at the 

number of your pieces versus the number of their pieces?  Do you look at whether or not your pieces 

control the center?  Do you look at the possibility of sacrificing one of your own pieces in order to 

capture a more important piece?  An evaluation function can be very complicated to formulate, 

especially in a game such as chess where there are so many strategical factors to take into account. 

Chess masters spend entire lifetimes figuring out the best way to evaluate which moves they should 

make, so at first creating such a function could seem very daunting, especially for someone who has 

not devoted years to learning the game of chess.

But if chess masters learn how to decide which moves to make by playing a lot of games and 

learning from their mistakes, why couldn’t a computer do the same thing?  In fact, computers, although 

they lack human intuition, can play full games of chess in a matter of seconds, so it is conceivable that 

they could learn how to effectively evaluate moves much faster than a human could.  Therein lies the 

purpose of this study: to see whether or not a computer can be programmed to not only play chess 

effectively and efficiently, but also learn from it’s mistakes, like humans do, and get better from game 

to game.  The chess program I have developed uses Temporal Difference learning to analyze the games 

it plays and modify its evaluation function accordingly.  This means that theoretically, the program 

could start out by making random moves, but then modify its evaluation function so that it progresses 

from simply choosing a random move to actually making an educated choice.

Background

In 1950, Claude Shannon wrote a groundbreaking paper called “Programming a Computer for 



Playing Chess.”  It dealt with various issues, such as how one might go about writing an artificial 

intelligence program that could play chess well, and what the evaluation of such a program might look 

like.  It discussed the problems involved with brute-force chess algorithms and suggested an AI 

algorithm that a computer chess program could use.  It suggested using a 2-ply algorithm (an algorithm 

that looks two turns into the future before applying the evaluation function), however if the program 

finds that a move could lead to a check or checkmate, then it would investigate that move and 

subsequent moves out to as many as 10 turns.  At the end of the paper, Shannon speculated about the 

possibility of computer programs that can “learn,” but noted that such developments were probably 

man years down the road.

About 50 years later in 1999, D.F. Beal and M.C. Smith published a paper called “Temporal 

difference learning for heuristic search and game playing.”  At this point, programs that could play 

chess had been well-developed, but research in machine learning was really just beginning.  The paper 

investigated the use of Temporal Difference learning as a way of making a computer chess program 

modify and improve its evaluation function each time it plays.  The researchers made their chess 

program learn for 20,000 games, and then ran their program against a program that had not learned its 

evaluation function.  The learned program performed decisively better over 2000 games than the 

unlearned program, showing that it is indeed possible for computers to improve their evaluation 

functions.

Development

Python was used to code this chess program.  The first stage of the program simply involved a 

console-based chess game where two humans could input their moves into the command line, and the 

board would be re-printed with the new move, as shown in Figs 1-3:



Fig 1 – The starting board, with white about to move a pawn

Fig 2 – White pawn moved, black about to move a knight



Fig 3 – Black knight moved, white about to quit
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